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“That musical styles are internalized probability systems is demonstrated by the rules of musical 

grammar and syntax found in textbooks on harmony, counterpoint, and theory in general. The 

rules given in such books are almost invariably stated in terms of probability […] Out of such 

internalized probability systems arise the expectations–the tendencies–upon which musical 

meaning is built.” 

Leonard B. Meyer (1967, p. 8)  
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English summary 

The fascinating powers of musical expertise make it a natural object of scientific 

enquiry. Previous research on this topic, however, has been to a large extent 

underpinned by romanticised concepts of genius and excellence leading to a view of 

experts as individuals blessed with skills that are primarily elusive, innate, all-or-

nothing, beneficial, and creative. This dissertation, in contrast, casts musical expertise 

in scientific terms, recognising it to be empirically investigable, acquired, continuous 

and multidimensional, adaptive as well as potentially maladaptive, and relevant to 

both the production and perception of music.  

By casting musical expertise as gradual optimisation of predictive coding 

mechanisms, this phenomenon becomes compatible with key theories in cognitive 

psychology and neuroscience. In this way, aspects of expert processing can be 

modelled computationally using information theory and investigated empirically with 

available behavioural and neurophysiological methods. The introductory chapter 

concludes by devising a novel framework facilitating scientific studies of musical 

expertise along these lines through the lens of six analytical perspectives. These 

relate to the origin of expertise, its cognitive representations, predictive uncertainty, 

predictive flexibility, and its conscious availability and neural correlates. 

The first three studies used behavioural probe-tone methods to address 

questions regarding the predictive coding of musical expertise, focusing on its 

manifestation, specialisation, and acquisition. Study 1 found that predictive 

uncertainty of melodic pitch expectations can be characterised in terms of the 

Shannon entropy of conditional probability distributions acquired through statistical 

learning of music over long time spans. Correlational fit between expectations and 

probabilistic structure in music was a linearly increasing function of experience, 

leading musicians to predict with lower degrees of uncertainty in general and 
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experience greater prediction error than non-musicians specifically in contexts 

containing high degrees of decodable probabilistic structure. 

Study 2 found that stylistic specialisation in jazz resulted in improved access to 

conscious introspection of one’s own uncertainty about the continuation of 

improvised solos by Charlie Parker. In other words, whereas professional musicians 

trained in jazz or classical music did not differ on explicit expectedness processing, 

they differed on uncertainty processing. Moreover, the fact that classical and non-

musicians refrained from misapplying their well-developed knowledge of general 

tonal music in stylistically irrelevant contexts supports theories of cognitive firewalls 

restricting the scope of predictive processing. 

Study 3 found that statistical learning of musical sequences can be modelled as 

minimisation of the relative entropy between listener expectations and the 

probabilistic structure of music. Consistent with predictive coding theory, this 

process took place across timescales and exposure corpora and was not affected by 

musical expertise when controlling for prior long-term exposure. 

Study 4, lastly, used MEG to show greater under-additivity of the MMNm 

response in musicians compared to non-musicians, specifically for the pitch 

component when sounds were presented in a musical context. This may be 

interpreted as training-induced plasticity of the neural mechanisms for auditory 

feature processing. 

Following up on the initially presented analytical framework, it is concluded 

that musical expertise to a large extent originates from statistical learning under 

(possibly) innate constraints. This phenomenon manifests itself as sophistication of 

cognitive representations, minimisation of the uncertainty of musical predictions, 

development of specialised contextual knowledge, and greater explicit access to this 

knowledge. These changes do not only captivate the audiences, but also shape the 

brains of the experts themselves.  
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Danish summary 

Den musikalske ekspertises fascinationskraft gør den til en naturlig genstand for 

videnskabelige undersøgelser. Tidligere forskning på dette felt har imidlertid været 

præget af et romantiseret genibegreb, hvilket har resulteret i et forfejlet syn på 

musikalsk ekspertise som udelukkende uhåndgribelig, naturgiven, alt-eller-intet, 

gavnlig og skabende. I modsætning hertil anskues musikalsk ekspertise i nærværende 

afhandling i et videnskabeligt perspektiv, hvorved den anerkendes som empirisk 

begribelig, tilegnet, kontinuerlig og flerdimensionel, adaptiv såvel som potentielt 

maladaptiv og relevant både i forhold til at skabe og opfatte musik. 

Når musikalsk ekspertise forstås som gradvis optimering af de kognitive 

mekanismer for predictive coding, bliver den forenelig med førende teorier inden for 

kognitiv psykologi og neurovidenskab. Dermed kan ekspertens mentale processer 

studeres med informationsteoretisk computermodellering, adfærdsforsøg og 

neurofysiologiske metoder. Seks analytiske perspektiver foreslås her i relation til 

ekspertisens ophav samt dens mentale repræsentationer, forventningssikkerhed, 

forventningsfleksibilitet, bevidsthedstilgængelighed og neurale korrelater. 

De tre første studier bestod i adfærdsforsøg, hvor lytteren vurderede, hvor godt 

en given tone fortsatte en melodisk kontekst. Hermed undersøgtes spørgsmål 

vedrørende predictive coding af musikalsk ekspertise med fokus på, hvordan 

ekspertisen kommer til udtryk, hvordan den specialiseres, og hvordan den tilegnes. 

Studie 1 viste, at forventningsusikkerhed i forhold til melodiske forventninger om 

tonehøjde kan karakteriseres ved Shannon-entropien af konditionelle 

sandsynlighedsfordelinger, som lytteren har tilegnet sig gennem statistisk læring af 

musik over længere tidsforløb. Korrelationen mellem lytterens forventninger og 

sandsynligheder i musikken viste sig at være en lineært stigende funktion af 

musikalsk erfaring. Således forudsiger musikere generelt med mindre usikkerhed 
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samt oplever større prediction error end ikke-musikere, sidstnævnte specifikt i 

sammenhænge med store mængder statistisk struktur, som kan afkodes. 

Studie 2 fandt, at stilistisk specialisering inden for jazz førte til bedre adgang til 

bevidste mentale processer vedrørende ens egen usikkerhed om forløbet af 

improviserede soloer af Charlie Parker. Selvom professionelle musikere inden for jazz 

eller klassisk musik ikke adskilte sig med hensyn til bevidst adgang til bagudrettede 

forventningsprocesser, så var der med andre ord forskelle, når det gjaldt fremadrettet 

usikkerhed. At klassiske musikere og ikke-musikere afstod fra at gøre fejlagtig brug af 

deres veludviklede kendskab til generel, tonal musik i stilistisk irrelevante 

sammenhænge som denne, støtter ydermere teorien om kognitive firewalls. 

Studie 3 fandt, at statistisk læring af musikalske forløb kan modelleres som 

minimering af den relative entropi mellem lytterens forventninger og 

sandsynligheder i den musikalske struktur. I overensstemmelse med predictive 

coding fandt denne proces sted over korte og lange tidsforløb med flere forskellige 

musikalske materialer, og den var ikke afhængig af foregående musikalsk træning. 

Studie 4 anvendte til sidst magnetoencefalografi (MEG) til at påvise større 

under-additivitet i det magnetiske mismatch negativity-respons (MMNm) hos 

musikere sammenlignet med ikke-musikere. Dette var specifikt for afvigelser 

indeholdende ændret tonehøjde, når de blev præsenteret i en musikalsk 

sammenhæng. Dette antyder, at neural processering af auditoriske features påvirkes 

af musikalsk træning. 

I lyset af den førnævnte analytiske forståelsesramme konkluderes det til sidst, 

at musikalsk ekspertise i vid udstrækning er tilegnet under (muligvis) medfødte 

fysiologiske begrænsninger. Ekspertisen kommer til udtryk som sofistikering af 

mentale repræsentationer, minimering af forventningsusikkerhed, kontekstafhængig 

specialisering samt større bevidst adgang til den tilegnede viden. Disse forandringer 

fascinerer ikke kun publikum, men former også ekspertens egen hjerne.  
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1. Introduction 

Although it remains to be fully understood why human cultures evolved music, as far 

back in time as our eyes and ears reach, one thing we know for sure is that music 

fascinates us. One particularly prominent source of this fascination is the excellence 

with which musical experts who are especially skilled in their profession transmit 

their messages in sound. Every day this fascination lures thousands of individuals 

from the safety of their armchairs into the unchartered territory of concert halls and 

music venues, sometimes traversing long distances, sacrificing considerable amounts 

of time and finances on such activities, seemingly with little or no evolutionary 

purpose.  For audiences, live music provides a rare opportunity to experience the 

expertise of leading musical stars first-hand; this may in turn nurture the hope that 

they can achieve similar levels of musical proficiency and excel themselves someday. 

The role of expertise as a catalyst for musical aspiration and idolisation makes 

it a natural object of scientific enquiry. This interest emerges most clearly from 

musicological reference works, including biographies and music history textbooks, 

where significant composers (DeNora, 1997; Elias, 1993; Fanning, 2003; Higgins, 

2004), instrumental virtuosos (Garcia, 2004; Southall, 1979), influential music 

teachers (Sand, 2005), and even instrument makers (Faber, 2006) are regularly 

labelled as musical geniuses. This discourse has a close affinity with the Romantic 

concept of genius, which, as a minimum, can be traced back to Jean-Jacques Rousseau 

in the second half of the 18th century (Rousseau, 1768).1 Despite its appeal, however, 

this conception of musical excellence tends to evade critical scrutiny, leading 

musicologists themselves to conclude that “[m]usic historians have not yet dealt with 

the concept of genius in any systematic manner” (Lowinsky, 1964, pp. 322-3). 

Consequently, systematic studies of musical excellence have never become a core 

                                                           
1
 There are even indications that related concepts of musical genius may have played a role earlier 

in music history, albeit with a slightly different meaning (Higgins, 2004; Lowinsky, 1964). 
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part of the musicological curriculum (e.g., Beard & Gloag, 2004; Christ & Marvin, 

2008; Clarke & Cook, 2004; Cook, 2000; Williams, 2001).2  

Cognitive psychologists, on the other hand, have investigated excellence 

systematically for nearly half a century framing it in terms of expertise and expert 

performance (Ericsson, Charness, Hoffman, & Feltovich, 2006). With seminal studies 

by Chase and Simon (1973), de Groot (1978), and Charness (1979), this work took 

chess and bridge as starting points, focusing on memory, visual perception, and 

conscious decision making, which are all of key importance in these domains. This 

research endeavour gradually expanded into sports (Hodges, Starkes, & MacMahon, 

2006), medicine (Schmidt & Boshuizen, 1993), military (Schvaneveldt et al., 1985), 

and music (Lehmann & Gruber, 2006; Sloboda, 1991), opening up new research areas 

such as situational awareness (Endsley, 2000) and deliberate practice (Ericsson, 

2008). Predominantly, a comparative perspective was maintained, emphasising 

similarities across domains instead of unique qualities and peculiarities of specialised 

fields. This has resulted in reviews and comprehensive volumes, offering a unified 

account of cognitive expertise (Ericsson, 2003; Ericsson et al., 2006; Ericsson & Smith, 

1991; Farrington-Darby & Wilson, 2006). 

Music researchers have largely adopted this view, modelling their experiments 

after classical studies in cognitive psychology. For this reason, deliberate practice 

(Platz, Kopiez, Lehmann, & Wolf, 2014), declarative memory (Crawford, Chaffin, & 

Imreh, 2002), situational awareness (Geeves, McIlwain, Sutton, & Christensen, 2014; 

Schiavio & Høffding, 2015), and visual perception (Waters, Townsend, & Underwood, 

1998) are also prominent topics in musical expertise research. Due to the 

aforementioned unifying aim, however, aspects with specialised relevance in musical 

                                                           
2
 Note that Haydon’s (1941) early introduction describes the possibility of an experimental 

psychology approach to ‘musical intelligence’ (pp. 100-109). This lead was, however, never truly 
pursued in subsequent musicological work. 
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contexts, such as time criticality, prediction, and audio-motor coupling, have not 

always received equivalent levels of attention. 

The overall goal of the current dissertation is to address this lacuna by 

developing, presenting, and testing a novel framework for scientific studies of musical 

expertise. This endeavour focuses on predictive processing, with the explicit aim of 

investigating specific aspects like receptive skills (in contrast to productive skills), 

predictive uncertainty, stylistic specialisation, and auditory feature processing which 

have thus far been somewhat understudied from the perspective of expertise. 

In the following background chapter, I argue that the present undertaking 

needs to first transcend the romanticised concepts of genius and excellence that 

dominate much previous music-related expertise research (Section 2.1). In doing so, I 

adopt a musical expertise concept that accommodates the specialised characteristics 

of music as a cognitive domain (Section 2.2). This perspective emphasises musical 

learning, framing it as optimisation of predictive processing (Section 2.3). For this 

reason, it is compatible with key theories in cognitive (neuro)science concerning 

predictive coding (Section 2.4) and statistical learning (Section 2.5). Expert 

processing can be modelled with a range of information-theoretic concepts (Section 

2.6), which, when operationalised and implemented in a computational model 

(Section 2.7), can be meaningfully related to empirical data obtained with 

behavioural (Section 2.8) and neurophysiological methods (Section 2.9). This 

approach is subsequently exemplified with a selection of specific research questions 

(Section 2.11), derived from the scientific framework (Section 2.10). 
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2. Background  

2.1. Romanticised concepts of musical genius and excellence 

An idealised concept of genius based on Romanticism pervades musicological 

discourse, but can also be traced in expertise research outside this sphere, for 

instance in the medical sciences (Robertson, 2008). In summary, this view tends to 

regard musical excellence as a conglomerate of (1) elusive, (2) innate, (3) all-or-

nothing, (4) beneficial, and (5) creative properties. This is clearly evident from the 

article on Genio from Dizionario a bibliografia dela musica (Lichtenthal, 1826):  

 

“Musical genius is that [2] inborn, [1] inexplicable [4] gift of Nature, or original 

faculty to [5] create with facility esthetic ideas and to give them [3] the most 

fitting expression in the melodic and harmonic organization of tones.” 

 

The numbers inserted here refer to the five properties mentioned above; thus, it is 

established that genius constitutes a highly treasured ability which is present from 

birth, and cannot be accounted for, enabling its owner to produce not only superior, 

but superlative pieces of artistry. I will now outline how this genius concept directly 

affects contemporary research. 

First, it is widely believed that musical excellence is elusive; in other words, it 

cannot–and perhaps even should not–be studied in systematic, let alone scientific, 

terms. This is evident from numerous musicological accounts associating expertise 

with the inexplicable, for instance: “Hildegard of Bingen […] had talents and skills that 

seem to us evidence of genius because we cannot rationally account for them” 

(Mellers, 1989). Others have demonstrated how this romanticised, genius-focused 

view was passed on to critical reviews of late-20th-century, modernist composers 

(Piotrowska, 2007) and to myth-building in rock music (Pattison, 1987). In 

contemporary popular culture, genius discourse dominates ‘The X Factor’ reality TV 
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concept named after a phenomenon that is defined by its ability to defy definition. In 

other words, if particular musical traits do not elude verbalisation, they would not be 

signs of X factor, or expertise for that matter. 

Second, musical excellence tends to be regarded as innate rather than as 

resulting from persistent practice (Bourne, Kole, & Healy, 2014; Chaffin & Lemieux, 

2004). This notion was already present in Galton’s (1869) early work emphasising 

and documenting inherited aspects of musical intelligence. Although later music 

researchers have characterised this widespread presumption as “folk psychology” 

(Davis, 1994; Sloboda, Davidson, & Howe, 1999) and a “myth” (Howe, Davidson, & 

Sloboda, 1998), yet it dominates colloquial discourse. For instance, 8-year-olds 

already tend to believe that, in contrast to sports skills, musical skills cannot be 

improved (O'Neill, 1996), and 75% of adults concur that the ability to compose, sing, 

and play a musical instrument requires a natural talent (Davis, 1994). Moreover, 

when providing free responses to the open-ended statement “Musical ability is…”, 

equally many report that it is innate (~9%) and both innate and learned (~9%), 

whereas fewer people consider musical ability as only learned (~1%) (Hallam & 

Prince, 2003). When it comes to expressive rather than technical skills, the folk-

psychological belief in innate talents is even prominent amongst musicians (Sloboda, 

1996). This misconception may owe partly to the etymological meaning of genius as 

“inborn nature” or “guardian deity or spirit which watches over each person from 

birth” (Harper, 2007).  

Third, excellence has traditionally been regarded as an all-or-nothing issue: 

either you have it or you don’t. Indeed, until recently, musicians were almost 

exclusively regarded as a homogenous group (Tervaniemi, 2009), and categorical 

comparisons between musicians and non-musicians dominated empirical music 

research both in the behavioural (e.g., Bigand, 2003; Brandler & Rammsayer, 2003) 

and brain sciences (e.g., Schlaug, 2001; Gaser & Schlaug, 2003; Münte, Altenmüller, & 
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Jäncke, 2002). Arguably, this has caused some negligence of instrument- and genre-

specific expertise. An all-or-nothing view of musical excellence also places learning in 

a peripheral role because practice cannot be used to transcend the boundaries of 

novice, amateur, and expert musicianship. In this way, research studies including 

amateur musicians as participants have typically just treated them as ‘musicians’ 

rather than as a distinct group (Fujioka, Trainor, Ross, Kakigi, & Pantev, 2004, 2005; 

Tervaniemi, Castaneda, Knoll, & Uther, 2006). Admittedly, however, recent research 

shows a budding interest in amateurs in individualised terms (Jentzsch, Mkrtchian, & 

Kansal, 2014; Müllensiefen, Gingras, Musil, & Stewart, 2014) as well as in stylistic 

specialisation (Vuust, Brattico, Seppänen, Näätänen, & Tervaniemi, 2012a). 

Fourth, musical ability is commonly referred to in positive terms as exclusively 

beneficial to its possessor. For instance, in a lexicon of core concepts in musicology, 

genius is described as “[a] term that invokes certain musical qualities, with the 

implication of greatness and a heightened sense of value” (Beard & Gloag, 2004, p. 

70). In this light, the advantages of expertise overshadow the disadvantages in terms 

of research focus (Chi, 2006b; see, however, Frensch & Sternberg, 1989; Grigorenko, 

2003; Sternberg, 1996; Sternberg & Frensch, 1992), effectively leaving novices, 

amateurs, aspiring talents, and music-related pathologies outside the brightest 

spotlight of scientific enquiry. 

Fifth, musical excellence is primarily expected to enhance its owner’s creative 

capability to generate music rather than his or her aptitude for perceiving and 

distinguishing musical qualities (e.g., Williamon, 2004). While studies of perceptual 

expertise are extremely commonplace in visual perception, this topic has received 

limited attention in auditory research (Chartrand, Peretz, & Belin, 2008). In other 

words, experts studied in empirical music research are typically highly skilled 

instrumentalists, and sometimes singers or composers. Similarly, in musicological 

discourse, Mozart is most famous for his compositional output whereas his alleged 
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successful complete and verbatim transcription of Gregorio Allegri’s Miserere after 

only two listenings at the Sistine Chapel is merely considered an amusing curiosity 

(Hochradner, 2015). This creative bias aligns well with observations that productive 

skills occur in 72% of free responses provided when prompted to define “musical 

ability” whereas this number only reaches 28-29% for receptive skills (Hallam & 

Prince, 2003). Moreover, etymological scrutiny reveals a relatedness of the word 

“genius” with the Latin and modern Italian terms for producing or generating (i.e. 

gignere and generare), once again biasing musicological discourse and empirical 

music research in an unfortunate direction.  

In conclusion, it is recommended that musical ability is phrased objectively 

rather than succumbing to romantically charged references to genius or musical 

excellence. Thus, while these terms have been used somewhat interchangeably until 

now, the more neutral term musical expertise will be adopted henceforth. In the 

following, this decision will be substantiated with a critique of the five Romantic 

characteristics, paving the way for the scientific view of expertise adopted in the 

current work. 

 

2.2. Casting musical expertise in scientific terms 

A closer scrutiny of the romanticised concepts of genius reveals that this picture is 

not tenable as a scientific view of musical expertise. First of all, intensive engagement 

with music manifests itself in terms of concrete changes of behaviour and of brain 

structure and function (Herholz & Zatorre, 2012; Merrett, Peretz, & Wilson, 2013; 

Schlaug, 2015; Stewart, 2008). Conceiving of these dynamics as elusive and thus 

exempting them from systematic studies would be highly unscientific. 

Likewise, empirical research has long since called into question whether 

genetics representative of innate musical talents can at all be identified without 

reference to essential interactions with environmental factors (Coon & Carey, 1989; 
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Simonton, 1999). In particular, researchers have not succeeded in predicting the 

potential for musical ability, arguably due to failures in accounting for musical 

training (Lehmann & Gruber, 2006). General psychological expertise research has 

similarly stressed the importance of accumulated practice time (Ericsson, Prietula, & 

Cokely, 2007) and how it is spent (Ericsson, 2006). Conversely, a recent meta-

analysis surveying published research on expertise in chess and music established 

that factors like general intelligence, age of commencement, and working memory–

some of which may have congenital components–constrain the effectiveness of 

expertise acquisition (Hambrick et al., 2014). Hence, a more nuanced view is needed. 

The challenges faced by a leading music researcher when struggling to define 

musical expertise clearly exemplify the potential benefits of rejecting the all-or-

nothing view. Specifically, Sloboda (1991) formulated both (a) a relativistic definition 

and (b) a goal-oriented definition of musical expertise. Whereas the former 

characterises a person solving a task better than average as an expert, the latter 

focuses on his or her ability to achieve a specific pre-defined goal. The author finds 

definition (a) limited because it refers to other people’s skills, thus circumventing a 

purely cognitively based definition which is independent from societal norms and 

traditions. Definition (b), on the other hand, is regarded as problematic because it 

provides no guarantee that the formulated goals are sufficiently ambitious, thus 

risking to inflate the expertise concept itself. What the author seemingly fails to 

realise, however, is that both of these definitions presume a categorical distinction 

between experts and non-experts. If this legacy is abandoned, the average 

performance level loses its importance. Thus, the crux of the matter is not whether 

one can achieve a particular goal that enables one to cross some arbitrary boundary, 

but rather how supplely and parsimoniously one is capable of doing so. In principle, 

this problem has no upper (or lower) limit, opening up all expertise levels to 

meaningful scientific enquiry. 
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Studies of maladaptive consequences of musical training, such as dystonia 

(Konczak & Abbruzzese, 2013) and tinnitus (Henry, Dennis, & Schechter, 2005), 

directly contradict the status of expertise as unconditionally beneficial. Under some 

circumstances, stylistic specialisation may, furthermore, deteriorate performance in 

unfamiliar musical styles (Curtis & Bharucha, 2009). Thus, detaching expertise from 

the notion of cognitive superiority provides a more balanced view.  

Because receptive skills have been regarded as a side effect of musical 

expertise, wholly secondary to creative skills, scientific knowledge about the 

specialised abilities of receptive experts remains rudimentary. Whereas piano tuners 

(Teki et al., 2012) and DJs (Butler & Trainor, 2015) have been subject to tentative 

(albeit promising) investigation, to my knowledge, few such studies (or none at all) 

exist for music critics, acousticians, sound technicians, audiophiles, music theorists, 

and musicologists. While this productive bias has some bearing in classical expertise 

domains like chess and bridge, which one is typically only exposed to by practising 

them, unintentional, passive exposure is central to music. This, in turn, renders 

receptive aspects paramount to musical expertise.  

Increasing scientific interest in perception-action coupling (Jackson & Decety, 

2004; Knoblich & Sebanz, 2006) and its relation to expertise (Farrow & Abernethy, 

2003; Novembre & Keller, 2014; Rosenbaum, Augustyn, Cohen, & Jax, 2006) raises 

the question whether receptive and productive aspects can be meaningfully 

dissociated at all. Until a true synthesis is achieved, it may be worthwhile devoting 

comparably more attention to the understudied receptive aspects of musical 

expertise. In fact, such a focus would be more consistent with what musicians 

themselves find important. Specifically, musically trained individuals value receptive 

skills much higher and productive skills much lower than untrained individuals when 

prompted to define musical ability (Hallam & Prince, 2003). 
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In the light of these limitations, for the remainder of this dissertation, I will 

adopt a view of expertise which is dissociated from previously dominant 

romanticised concepts of genius and excellence (Figure 1). Specifically, musical 

expertise will be regarded as a non-metaphysical phenomenon which has a cognitive 

and neurobiological basis in the human brain, making it accessible to systematic 

empirical investigation with scientific methods. It will be acknowledged that 

expertise is acquired, but that this process may be subject to biological constraints. 

Following naturally from this, musical expertise not only spans a non-categorical 

continuum, but is in itself a multidimensional phenomenon whose composite parts 

are orthogonal and combine in unique ways for each individual. Thus, all levels of 

expertise resulting from different combinations of expertise dimensions may be 

relevant to study. This should solely depend on the research question. Importantly, 

this inclusive expertise concept also extends beyond beneficial consequences of 

training-induced neuroplasticity to maladaptive ones as well as beyond productive 

skills to receptive and recepto-productive ones.  

Namely, the rejection of the innate and all-or-nothing qualities of expertise 

assigns hitherto unseen levels of importance to musical learning. In other words, 

systematic studies of musical expertise aim not only to understand what this 

phenomenon is, but also how it is acquired. In this light, research should not only aim 

to understand what expertise is, but also aim to develop optimal teaching and 

practice strategies for achieving it. The next step is to introduce a perspective on 

musical learning that I find especially productive when it comes to illuminating 

musical expertise. This is of course substantiated by an abundance of empirical and 

theoretical work which will also be summarised below. 
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Figure 1. Concepts of musical expertise. Whereas the traditional romanticised concepts of 

genius and excellence tend to view musical expertise as elusive, innate, all-or-nothing, 

beneficial, and creative, a more modern scientific concept of musical expertise transcends this 

picture viewing it instead as a multidimensional phenomenon open to scientific enquiry. A 

Danish version of this figure appeared in Hansen (2015). 

 

2.3. Musical learning as predictive processing optimisation 

Given the multidimensionality of musical expertise described above, further 

delimitation is preferable before formulating specific research questions. In addition 

to conveying that musical learning should play a special role in this regard, I will 

argue that musical expertise and, in turn, musical learning should be understood in 

terms of optimisation of predictive processing. This predictive perspective is 

especially suitable due to (a) its validity across expertise domains, (b) its particular 
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relevance in musical contexts, and (c) its potential to unify multifarious 

characteristics of musical expertise. Further details will be given below. 

Regarding (a), the general expertise literature contains numerous examples of 

superior predictive processing and more refined cognitive representations in experts 

(Ericsson & Towne, 2010; Endsley, 2006). This applies to chess players (Klein & Peio, 

1989), but also to athletes specialising, for instance, in squash (Abernethy, Gill, Parks, 

& Packer, 2001), rugby (Mori & Shimada, 2013), or tennis (Williams, Huys, Cañal-

Bruland, & Hagemann, 2009). Enhanced prediction may, in turn, underlie experts’ 

superiority in detection and recognition (Chi, Feltovich, & Glaser, 1981), working 

memory (Ericsson & Delaney, 1999), and continuous self-monitoring (Chi, 1978).  

The relationship between expertise and anticipatory skills is, however, not 

straightforward. For instance, in cricket, accumulated hours of practice only explains 

a negligible proportion of variance in a player’s ability to predict other player’s 

actions (Weissensteiner, Abernethy, Farrow, & Müller, 2008). Although this 

possibility has not been tested formally, this may relate to the way that anticipation 

was assessed. Specifically, an explicit task without time constraints was applied 

which may differ fundamentally from more intuitive real-time processing. Similarly, 

educational qualification is a better predictor than clinical experience of a physician’s 

diagnostic skills (Kundel & La Follette, 1972). This, on the other hand, may be 

ascribable to ceiling effects (Camerer & Johnson, 1997), especially if the formal 

training that the physicians had received was already delivered at a very high level. 

These examples aptly demonstrate the importance of ecological validity and task 

difficulty when designing expertise studies. 

Regarding (b), perception and production of music is based on minute 

precision within the temporal dimension and thus imposes considerable demands 

concerning immensely accurate real-time processing, both on the part of the listener 

and the performer. These requirements are typically less prominent within the 
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classical expertise domains. Even in blitz games with limited time for each chess move 

(Calderwood, Klein, & Crandall, 1988), the timescale is still considerably longer than 

in music and also not constrained by regularly repeating metrical structure. For these 

reasons, expectation mechanisms are considered paramount in music perception and 

cognition (Huron, 2006; Pearce & Wiggins, 2012; Vuust, Ostergaard, Pallesen, Bailey, 

& Roepstorff, 2009) where behavioural and neural measures of predictive processing 

efficacy relate directly to degrees of musical expertise (e.g., Vuust et al., 2012a). The 

notion that predictive processing is particularly relevant to music is, furthermore, 

consistent with the increasing consensus in general expertise research assigning 

varying degrees of significance to different skill components (e.g., prediction, 

verbalisation, speed, differentiation accuracy, and memory) within each expertise 

domain (Thompson, Tangen, & Searston, 2014). 

Lastly, regarding (c), predictive processes are involved in most musical 

activities that can be enhanced through practice and experience. This includes 

musical performance (Gingras et al., 2015), interaction (Pecenka & Keller, 2011), 

improvisation (Goldman, 2013), and composition (Wiggins, Pearce, & Müllensiefen, 

2009), reading musical notation (Waters et al., 1998), and listening to music (Huron, 

2006). Prediction also underlies key aspects of emotional experiences to music 

(Huron, 2006; Juslin & Vastfjall, 2008; Meyer, 1956). Thus, optimised predictive 

processing may explain expertise advantages in relation to pitch memory 

(Williamson, Baddeley, & Hitch, 2010), deviance detection for rhythm (Vuust et al., 

2005) and pitch (Besson, Schön, Moreno, Santos, & Magne, 2007) as well as for 

boundary perception (Neuhaus, Knösche, & Friederici, 2006) and implicit learning of 

novel musical material (Francois & Schön, 2011). Note that whereas the vast majority 

of classical studies on expertise-related enhancements in predictive processing 

mentioned above address higher-order decision making, music-related studies 
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demonstrate the pertinence of this topic across all levels of action, perception, 

cognition, emotion, and learning.  

In summary, musical learning increases the aspiring expert’s ability to predict 

musical continuation, and this knowledge enhances processing in a multitude of 

ways. Given that optimised predictive processing is thought to be biologically 

adaptive (Bubic, von Cramon, & Schubotz, 2010), music’s potential in this regard may 

explain why some (if not most) humans devote considerable time and resources to 

musical activities. This hypothesis about the driving forces of musical expertise, and 

thus ultimately about the origins of music itself, assumes an explicit computational 

formulation in predictive coding theory under the free-energy principle as expressed 

in cognitive neuroscience. 

 

2.4. Predictive coding and free-energy minimisation 

Recent theories of human cognition and neuroscience converge on regarding the 

human brain as a hierarchically structured “prediction machine” optimised for 

inferring the causes of sensory input, thus enabling it to generate correct predictions 

about the future (Bar, 2007, 2011; Bubic et al., 2010; Clark, 2013, 2015; Hohwy, 

2013). This view has its roots in Hermann von Helmholtz’ (1875/2011) seminal work 

on perception, but finds a neurobiologically plausible and explicit mathematical 

formulation in modern predictive coding theory (Friston, 2005, 2009). Due to its clear 

focus on continuous optimisation of predictive brain models, this theory offers an 

exceptionally adequate framework for understanding musical learning and expertise, 

both conceptually and computationally. Nevertheless, whereas recent studies have 

developed predictive coding accounts of auditory (Furl et al., 2011; Kumar et al., 

2011) and music perception (Lee & Noppeney, 2014; Vuust et al., 2009; Vuust & 

Witek, 2014; Winkler & Czigler, 2012), the potential of this theory for addressing 

musical expertise questions remains largely uninvestigated. 
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Predictive coding theory posits that humans are biologically predisposed to 

adapt behaviours and strategies that minimise surprise in interactions with their 

environment (Friston, 2009). Surprise, in this context, corresponds to the negative 

log-probability of an outcome given the current generative model of the brain. 

Minimisation of surprise is achieved when events that the biological system 

represented by the brain considers to be especially likely are also the ones that 

actually happen. As will be evident from Sections 2.6-7 below, a predictive model that 

assigns high probability to a few elements from the range of theoretically possible 

outcomes is characterised by low uncertainty. Thus, in effect, learning through 

predictive coding entails a process of gradually reducing the uncertainty of one’s 

predictions.  

Importantly, the world is governed by two distinct types of uncertainty (Weber 

& Johnson, 2008). “Epistemic uncertainty” is the subjective type described above 

which we can reduce by updating and optimising our predictive models. There will, 

however, always be more or less random–and thus objectively unpredictable–

fluctuations around us giving rise to “aleatory uncertainty” which we can never 

reduce, even if we were gifted with perfect knowledge. Thus, if we tune our predictive 

model beyond epistemic uncertainty, it becomes over-confident (cf. Section 2.10.3) 

and outcomes to which we have assigned low probability will indeed occur. Surprise 

then rises again. In other words, the potential for predictively coded learning is 

constrained by stochastic properties of the world. 

Due to aleatory uncertainty, humans never achieve full knowledge about future 

states and thus cannot, in fact, minimise surprise itself. Rather, they minimise free 

energy, representing a maximum bound on surprise (Friston & Stephan, 2007). This 

can be done in two ways: either by updating one’s generative model as previously 

described, or by selectively sampling sensory input that conforms to–and thus 

maximises the evidence for–this model (Friston, Kilner, & Harrison, 2006). The 
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former corresponds to perception whereas the latter corresponds to action. For 

instance, to facilitate speech decoding in a noisy cocktail party environment, we may 

develop a sophisticated mental model that can predict what is being said based on the 

context (i.e. perception) as well as increase signal quality by moving closer to the 

speaker and gaining a good view of her lips (i.e. action). This means that learning 

(musical and otherwise) can be modelled directly with the computational principles 

that predictive coding formulates for perceptual inference. 

One further characteristic that makes predictive coding especially relevant for 

modelling musical learning is the fact that this theory embodies a recent paradigm 

shift in theoretical neuroscience concerning the way that sensory information is 

thought to be represented in the human brain (Picard & Friston, 2014). Notably, 

previous accounts followed the so-called compressive coding doctrine (Redlich, 1993), 

emphasising how neural encoding schemes seemingly aim for a minimum description 

length leading to optimally efficient cognitive representations of sensory information 

(Simoncelli & Olshausen, 2001). Whereas this previous doctrine arose from The 

Computational Theory of Mind which dominated cognitive science in the 1960s and 

1970s (Rescorla, 2015), predictive coding accommodates later critiques of 

computationalism referring, in particular, to the embodied nature of cognition and 

the ensuing importance of the organism’s interaction with its environment (e.g., 

Chemero, 2011; Varela, Thompson, & Rosch, 1991).  

Although compressive and predictive coding both promote simplicity as a 

fundamental cognitive principle (Chater, 1999; Pothos & Chater, 2002) and adopt 

information theory in their modelling strategies (Section 2.6), they differ 

fundamentally in terms of information processing (Barlow, 2001). Whereas 

compressive coding generally conceives of these processes as passive, unidirectional 

information passing from the external environment into the brain, predictive coding 

involves both feedforward and feedback connections structured hierarchically at 
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multiple levels (red and black elements in Figure 2, respectively). Specifically, the 

activity on a lower level in the cortical processing hierarchy that cannot be 

successfully explained away by descending predictions from the next level up is 

passed upwards where they are subjected to further higher-level predictions (Rao & 

Ballard, 1999). This feedforward component of information processing is referred to 

as prediction error, giving rise to error signals in the brain which can be detected with 

non-invasive, neurophysiological methods (Garrido, Kilner, Stephan, & Friston, 2009; 

Wacongne, Changeux, & Dehaene, 2012) (Section 2.9). 

 

 

Figure 2. Information processing in predictive coding. Ascending prediction errors (red) and 

descending predictions (black) are elements in neural processing following computational 

principles of empirical Bayes. Further, neuromodulation of synaptic gain takes place according 

to expected precision (blue). This figure is adapted from Friston et al. (2014). 

Cortical hierarchies 
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Computationally, predictive coding is based on empirical Bayes where priors 

are estimated directly from sensory data (Friston, 2005) and where this information 

is encoded as probability distributions (also referred to as the “Bayesian coding 

hypothesis” (Knill & Pouget, 2004; Pouget, Beck, Ma, & Latham, 2013).  

Importantly, in this system, prediction errors are weighted according to their 

expected precision using neuromodulatory mechanisms of synaptic gain control (blue 

elements, Figure 2) (Friston, 2009; Ross & Hansen, 2016). In this way, the brain’s 

generative model is assigned greater importance under conditions of deteriorated 

signal quality. Thus, in the aforementioned cocktail party example, we rely more 

strongly on our ability to infer what is being said when the volume of the background 

music is increased. This shows the importance of quantifying, modelling, and 

measuring not only surprise, but also uncertainty in the system (Sections 2.6-8). 

Free-energy minimisation has been promoted as a candidate for a unified 

theory of human cognition and brain function (Friston, 2010). The most important 

argument for this proposition is constituted by its mathematical and conceptual 

similarities with other key theories in machine learning, computational neuroscience, 

and evolutionary biology (Figure 3). For this reason, predictive coding has been 

adopted as a framework for explaining and operationalising such diverse phenomena 

as attention (Brown & Friston, 2013), associative learning (Pezzulo, Rigoli, & Friston, 

2015), theory of mind (Ondobaka, Kilner, & Friston, 2015), mirror neurons (Kilner, 

Friston, & Frith, 2007), neural migration and differentiation (Friston, Levin, Sengupta, 

& Pezzulo, 2015), human and animal communication (Friston & Frith, 2015), visual 

illusions (Brown & Friston, 2012), dreaming during REM sleep (Hobson, Hong, & 

Friston, 2014), reinforcement learning (Friston, Rigoli, et al., 2015), eye movements 

(Perrinet, Adams, & Friston, 2014), self-representation (Moutoussis, Fearon, El-

Deredy, Dolan, & Friston, 2014), Freudian constructs (Carhart-Harris & Friston, 

2012), and decision making (Friston et al., 2014). Moreover, deficiencies in predictive 
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coding processes may explain a multitude of pathologies such as schizophrenia 

(Fogelson, Litvak, Peled, Fernandez-del-Olmo, & Friston, 2014), autism (Quattrocki & 

Friston, 2014), psychotic delusions (Adams, Brown, & Friston, 2015), and musical 

hallucinations (Kumar et al., 2014). Given this generality, predictive coding theory 

has potential as a computational theory for understanding expertise-related 

empirical findings in cognitive psychology. 

 

 

Figure 3. The free-energy principle as a unifying theory of human brain function. By way of the 

free-energy principle, predictive coding theory has close theoretical, computational, and 

empirical affiliations with other key theories in computational neuroscience, evolutionary 

biology, and machine learning. This figure appeared in Friston (2010). 
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2.5. Statistical learning 

During the last two decades, research in the field of cognitive psychology has shown 

great interest in statistical learning as a key mechanism whereby humans acquire 

knowledge about probabilistic regularities and dependencies in their environment 

(Aslin & Newport, 2012). This mechanism is especially crucial in early language 

acquisition (Romberg & Saffran, 2010), as clearly exemplified by Saffran (2003). She 

describes a situation where an infant in a setting with English as a native language 

hears the syllable combination “pretty baby”. Because word boundaries are far from 

unambiguously evident from the temporal structure of spoken language, the infant 

needs to perform word segmentation based on previous experience. Quite 

impressively, the transitional statistics in speech to young infants in and of 

themselves provide sufficient information for the infant to solve this task successfully. 

Specifically, it will have heard “-ba” following “tty-” much less frequently (~0.03%) 

than “-tty” has followed “pre-” (~80%). Consequently, “pretty” and “baby” are likely 

to be acquired as separate words. 

Statistical learning is most commonly demonstrated in experiments comprising 

an initial exposure phase and a subsequent test phase (e.g., Saffran, Aslin, & Newport, 

1996). After brief exposure to a continuous stimulus sequence (typically less than half 

an hour for adults and only a couple of minutes for infants), participants internalise 

transitional statistics allowing them to distinguish “words”, i.e. stimulus combinations 

they were exposed to, from “part-words” and “non-words” which they were only 

exposed to in part or not at all. Learning is usually assessed using an explicit two-

alternative, forced-choice task for adults and a variation of the head-turning 

paradigm for infants (Saffran, Johnson, Aslin, & Newport, 1999).  

In addition to language, such procedures have demonstrated robust learning 

effects for visual sequences of abstract shapes (Fiser & Aslin, 2002) and animal 

pictures (Saffran, Pollak, Seibel, & Shkolnik, 2007), for visuomotor (Hunt & Aslin, 
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2001) and tactile tasks (Conway & Christiansen, 2005), and for musical timbres 

(Tillmann & McAdams, 2004) and pitches (Loui, Wessel, & Hudson Kam, 2010; 

Saffran et al., 1999). Statistical learning even generalises to some types of non-

adjacent dependencies (Newport & Aslin, 2004). Additionally, it happens from birth 

(Teinonen, Fellman, Näätänen, Alku, & Huotilainen, 2009), is largely automatic and 

implicit (Turk-Browne, Jungé, & Scholl, 2005), applies across modalities (Kirkham, 

Slemmer, & Johnson, 2002; Perruchet & Pacton, 2006), and can be detected in 

primates (Newport, Hauser, Spaepen, & Aslin, 2004) as well as in non-primate 

mammals (Toro & Trobalón, 2005). 

The efficacy of statistical learning is, however, affected by attention (Toro, 

Sinnett, & Soto-Faraco, 2005; Turk-Browne et al., 2005) as well as by domain-specific 

biases (Saffran, 2003), tied to perceptual properties of the input (Conway & 

Christiansen, 2006). Particularly for stimuli that are presented sequentially (Saffran, 

2002) and characterised by high task demand (Robinson & Sloutsky, 2013), the 

strongest learning effects have been obtained in the auditory modality (Conway & 

Christiansen, 2005). Despite this apparent bias, however, the diversity of the 

previously summarised findings clearly indicates that statistical learning may 

represent a behavioural manifestation of innate and universal processing 

mechanisms akin to those described above for predictive coding (Section 2.4). The 

auditory bias only makes music an especially suitable domain for investigating 

predictive coding of expertise. 

If predictive coding under the free-energy principle truly constitutes a 

generalisable computational principle characterising all levels of cognitive and neural 

processing, then this principle should also underlie statistical learning. Consequently, 

hypotheses derived from predictive coding theory should hold true for statistical 

learning (Fiser, Berkes, Orbán, & Lengyel, 2010). Specifically, based on predictive 

coding theory, we would first of all expect that model optimisation manifests itself in 
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terms of reductions in predictive uncertainty that can be demonstrated in test data 

from statistical learning experiments. Second, the expectations resulting from 

exposure would reflect probabilistic characteristics of the particular musical style in 

question, and this should be the primary factor influencing what is learned. Third, this 

learning process would be expected to depend on the statistical decodability (i.e. the 

amount of epistemic uncertainty) of the stimulus material. Fourth and finally, given 

that predictive coding describes innate and fundamental principles of neural 

information processing, notable expertise-related enhancements would not be 

expected for the cognitive learning capabilities themselves. These are all empirical 

questions that can be–and will be–tested directly (Chapters 3 and 4; Study 3). This 

task requires the availability of computational concepts with applicability across 

cognitive psychology and neuroscience. 

 

2.6. Information-theoretic models of cognition 

Information theory, introduced by Claude E. Shannon (1948), offers a way of 

quantifying statistical learning, including the cognitive limitations and probabilistic 

constraints of the stimulus material which affect these processes. This field has had 

an immense impact on science (Brillouin, 2013), represented by disciplines as diverse 

as signal processing, data compression, physics, statistics, economics, computing, and, 

finally, the neurobiology of perception, including predictive coding (Rao & Ballard, 

1999). Three information-theoretic concepts, which all play a key role in the 

mathematical formulation of predictive coding theory (Section 2.4), will be 

capitalised upon here because they aptly quantify different aspects of the listening 

experience relevant to musical learning and expertise.  

First, information content (IC) models surprise, which is sometimes also 

referred to as “surprisal” (MacKay, 2003). Note that because surprise, in this context, 
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depends on the probability assigned to events according to a particular observer (i.e. 

a subjective probability), IC constitutes a subjective property of the brain’s generative 

model of the world rather than an objective property of the world itself. Formally, IC 

corresponds to the negative log probability; typically, the base-2 logarithm is used, 

making bits (i.e. binary digits) the relevant unit of measurement. Thus, for a discrete 

random variable, X, where P(xi) refers to the probability of the ith state of X, the 

information content of the outcome that X attains the value xi equals: 

 

 !"(#$) = %&'*+,%-(#$) (information content) (1) 

 

Second, absolute entropy (also “Shannon entropy”) models the uncertainty with 

which predictions are being generated. In mathematical terms, for a discrete random 

variable, X, with n possible states, we have the probability distribution over the n 

states of X, P(X), which will henceforth simply be referred to as P as a shorthand. The 

absolute entropy of P, H(P), thus represents the uncertainty with which values 

sampled from P can be predicted, corresponding to the expected value of the 

information content: 

 

 .(-) = %&/-(#$) 012, -(#$)
3

$45
  (2) 

 

In other words, absolute entropy quantifies the shape of the probability 

distribution such that “flat” distributions where all possible outcomes are equally 

likely to occur are maximally uncertain. “Spiky” distributions, on the other hand, 

where one or more particular outcomes are much more likely than others enable 

prediction characterised by low degrees of uncertainty. Importantly, Equation 2 

assumes that all events in the distribution have non-zero probabilities and sum to 

unity.  
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As evident from Equation 2, the maximum entropy of a given probability 

distribution depends on n, which is also referred to as the alphabet size. Therefore, to 

allow comparison across probability distributions with different alphabet size, 

absolute entropy is often normalised by dividing by the maximum entropy, 

corresponding to a uniform distribution with the relevant alphabet size, i.e. Hmax(P) = 

log2 n (see e.g., Eerola, Himberg, Toiviainen, & Louhivuori, 2006). For the remainder 

of this dissertation, the resulting normalised entropy measure (Equation 3) will 

simply be referred to as “absolute entropy”: 

 

.3*67(-) = % .(-)
.78#(-) =

&9 -(#$) 012, -(#$)3$45
012, 3  (absolute entropy) (3) 

 

Third, the Kullback-Leibler Divergence, DKL(P||Q), quantifies the dissimilarity 

between two probability distributions which are referred to here by shorthand as P 

and Q (Kullback & Leibler, 1951). In detail, it designates the information lost when 

approximating one distribution (P, e.g. the “true” one) with another distribution (Q, 

e.g. a model of the true distribution): 

 

!

:;<(P║Q)%=%/'*+,
3

$45
>-(#$)?(#$)@-(#$)!

!

 (4) 

 

As evident from Equation 4, the computation of Kullback-Liebler Divergence is 

similar to that for absolute entropy, with the sole exception that the log-probability is 

replaced by the log of the probability ratio, representing the two distributions in 

question. Because the association of distributions to numerator and denominator is 

not arbitrary, Kullback-Leibler Divergence is non-symmetric, and therefore not a true 

metric, i.e. DKL(P║Q) ≠ DKL(Q║P). As was also the case for absolute entropy, maximum 
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DKL increases with alphabet size. Whereas no further normalisation was performed 

here because the current experimental designs did not necessitate this (see Appendix 

6.3 for further details), symmetrisation was indeed implemented. In contrast to the 

original inventors who simply recommended adding the two divergences (Kullback & 

Leibler, 1951), for convenience we further divided this sum by two. Consistent with 

common terminology (Cover & Thomas, 2012), this symmetrised version of the 

Kullback-Leibler Divergence will henceforth be referred to simply as relative entropy. 

 

AB7:;<(PCQ) = :;<D-║?E F :;<D?║-E
, %%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%=
9 '*+,3$45 >-(#$)?(#$)@-(#$) F 9 '*+,3$45 >?(#$)-(#$)@?(#$)

, !

(relative entropy) (5) 

 

Having formally defined information content (Equation1), absolute entropy 

(Equation 3), and relative entropy (Equation 5), we can now use these information-

theoretic measures to quantify intrinsic aspects relevant to predictive coding of music 

and musical expertise. First, we let P designate the probabilistic structure of the 

music that a listener has been exposed to (cf. green line in Figure 4). In the context of 

a statistical learning paradigm, as specified in Section 2.5 above, P may describe a 

probability distribution over the alphabet of elements occurring in the exposure 

sequence; this is indeed the case in Figure 4. The ensuing Section 2.7 introduces an 

alternative way of estimating P if we do not have access to the exact profiles of 

exposure stimuli. This is particularly relevant when modelling musical learning on 

longer timescales outside the laboratory setting, for instance in the course of an 

entire life. Next, we let Q designate the subjective expectations of a given listener for 

different pitch continuations of the same melody (cf. the solid and dashed red lines in 

Figure 4). Section 2.8 describes in greater detail how empirical data representative of 
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Q may be obtained such that the previously described modelling attempts may be 

validated systematically.  

 

 

Figure 4. Information-theoretic modelling of musical listening and learning. Exemplification of 

experiential aspects that can be quantified with information-theoretic means. For instance, the 

green line, P, may represent the frequencies with which the 13 notes of a scale have occurred 

during exposure (e.g. in a statistical learning experiment). The red lines, Q, conversely, represent 

empirical data of the listener’s expectations for these 13 notes before (dashed) and after (solid) 

exposure (Section 2.8). Information content models the surprise experienced in response to a 

given note. Absolute entropy models the uncertainty with which predictions about melodic 

continuation can be made. Relative entropy, finally, models the dissimilarity between the red 

and green lines, which is hypothesised to decrease with musical learning. This figure was 

adapted from Loui et al. (2010). 

 

To recap, we have defined two probability distributions, P, representing the 

objective exposure of a given listener (green line in Figure 4), and Q, representing the 

subjective listening experience (red lines in Figure 4). Because statistical learning and 

predictive coding suggest that the listener gradually internalises characteristics of the 

former distribution during exposure, P, in other words, represents an idealised model 

of listener expectations whereas Q represents an empirical manifestation of this 

Q

P 
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idealised model. Following from this, the IC of an event sampled from P constitutes a 

model of the surprise or unexpectedness experienced by the listener.3 The absolute 

entropy of P, in turn, provides a model of the uncertainty experienced by the listener 

whereas the absolute entropy of Q represents its empirical manifestation. Finally, 

statistical learning and predictive coding also suggest that exposure decreases the 

dissimilarity between P and Q, thus making the relative entropy between these two 

distributions a model of musical expertise. In the context of Figure 4, this learning 

process would align the solid red line with the green line. 

The cognitive validity of these measures will now be substantiated, elaborating, 

in particular, on their relation to predictive coding. First of all, information content 

constitutes a relatively well-tested model of surprise in music, accounting for a 

considerable proportion of the variance in expectedness ratings (~78%) and 

response times for such ratings (~56%) (Pearce, Ruiz, Kapasi, Wiggins, & 

Bhattacharya, 2010). The same study also found that notes with high and low IC 

produced significantly different event-related responses and oscillatory brain 

activity. The effect of IC on expectancy can similarly be detected using an implicit 

timbre judgement paradigm (Omigie, Pearce, & Stewart, 2012), and its relevance as a 

cognitive model has been extended to many other datasets (Pearce & Wiggins, 2006), 

including psychological and physiological measures of emotional experience 

(Egermann, Pearce, Wiggins, & McAdams, 2013). 

Absolute entropy has only been used to explicitly model cognition outside the 

musical domain. Here, its cognitive relevance has been established for sentence 

comprehension (Hale, 2006), decision making (Swait & Adamowicz, 2001), 

psychological anxiety, physiological noradrenaline release (Hirsh, Mar, & Peterson, 

2012), and for altered states of consciousness (Carhart-Harris et al., 2014). Although 

                                                           
3
 For the remainder of this dissertation, the terms “surprise” and “unexpectedness” will be used 

interchangeably. Whereas the former has a very specific meaning in information theory, the latter 
may be easier to relate to for participants in a listening experiment. In terms of what we model with 
information content, these concepts will be considered as equivalent. 
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reference to predictive coding and free-energy minimisation was only made explicit 

in the last case, the parallels are most certainly reasonable. 

In the musical domain, Shannon’s information theory was quickly translated by 

Meyer (1957) into the statement that “musical styles are internalized probability 

systems” (p. 414). This, in turn, inspired a whole generation of computationally 

minded researchers to implement absolute entropy in musical analysis and 

composition (Hiller & Bean, 1966; Hiller & Ramon, 1967; Siromoney & Rajagopalan, 

1964; Youngblood, 1958; Zanten, 1983, as reviewed by Ames, 1987, 1989; Cohen, 

1962; Margulis & Beatty, 2008), with subsequent ramifications in music information 

retrieval (e.g., Madsen & Widmer, 2007). However, apart from a few relatively recent 

exceptions (e.g., Duane, 2010, 2012; Eerola, Toiviainen, & Krumhansl, 2002), these 

researchers have typically estimated entropy from small music collections. This has 

prevented them from incorporating the schematic effects of long-term exposure 

which constitute a necessary requirement for a true model of melodic cognition 

(Huron, 2006). Also, if assessed as a cognitive model, early work ignores that 

probabilities change dynamically as a musical progression unfolds (Meyer, 1957), 

thus erroneously assuming that expectations are informed by music that the listener 

has not yet heard. More recent studies have used absolute entropy to quantify 

response consistency in a categorical rhythm discrimination task (Desain & Honing, 

2003) or in an explicit betting paradigm regarding the continuation of Balinese 

gamelan melodies (Huron, 2006, pp. 53-55, 154, 162). Because these information-

theoretic response metrics were, however, not related directly to properties of the 

stimuli, these studies only offer half of what is required for a cognitive model. 

Relative entropy constitutes a key computational component of predictive 

coding theory. Specifically, free energy can be expressed as surprise plus the relative 

entropy between the recognition density and the conditional density on the causes of 

sensory data (Friston, 2010). Thus, free-energy minimisation automatically entails 
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minimisation of relative entropy. Such parallels between relative entropy and free-

energy minimisation are equally plentiful beyond cognition in optimal control theory 

(Theodorou & Todorov, 2012), financial mathematics (Cherny & Maslov, 2004), and 

neural-network classification tasks (Santos, Alexandre, & de Sá, 2004).  

In cognitive disciplines, minimisation processes may manifest themselves in 

various ways. For instance, absolute entropy minimisation has been used both to 

model artificial grammar learning in visual cognition (Pothos, 2010) and perceptual 

grouping in auditory cognition (Smaragdis, 1997). Relative entropy modelling has, in 

comparison, primarily informed Bayesian research on visual perception and reward 

processing. This work has demonstrated that visual attention is guided by the relative 

entropy between prior and posterior distributions of beliefs of an observer (Itti & 

Baldi, 2009). Additionally, exploration and exploitation in reward behaviour can be 

accounted for in terms of minimisation of the relative entropy between likely and 

desired outcomes (Schwartenbeck, FitzGerald, Dolan, & Friston, 2013). Interestingly, 

despite the generality of these principles promoted by predictive coding and 

substantiated by empirical work in other domains, relative entropy minimisation has 

thus far not been demonstrated in the auditory modality. 

In summary, entropy has been used for modelling objective characteristics of 

musical styles, revealing interesting aspects of the compositional process. 

Additionally, while IC represents an empirically validated model of music cognition, 

the absolute and relative entropy metrics have not yet been fully implemented and 

tested within this domain. Related work in neighbouring areas, however, alludes to 

the relevance of these metrics as models of predictive processing in music listening, 

giving rise to musical expertise. A computational model of expectation would allow 

researchers to take full advantage of this potential. 
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2.7. IDyOM: A computational model 

The computational model of auditory expectation Information Dynamics of Music 

(henceforth IDyOM; Pearce, 2005) provides a much-needed bridge between 

neuroscience and psychology in that it allows researchers to model statistical 

learning with the information-theoretic concepts that play such a crucial role in 

predictive coding theory. Because IDyOM can combine short-term estimation of 

probabilities with the effects of long-term exposure on listener expectations, it, 

furthermore, offers an alternative approach to estimating the P distribution, referred 

to in Section 2.6 and Figure 4 above. 

Based on unsupervised statistical learning, IDyOM produces a conditional 

probability distribution governing a pre-specified attribute of the next event given 

the preceding events in the sequence (Pearce, 2005). Typically, and most relevant 

here, the sequence comprises notes of a musical melody, and the relevant attribute 

(also referred to as the “target viewpoint”) is absolute pitch defined in chromatic 

pitch space using MIDI pitch numbers (i.e. middle C4 would have the value 60). 

However, in principle, the basic modelling procedure could be applied to any type of 

sequence, thus paving the way for future applications of IDyOM to verbal and non-

verbal languages, dance, etc.  

The generated probability distributions are normalised such that they sum to 

unity across the complete alphabet, normally comprising the union of pitch values 

occurring in the test and training corpora (further details below). Moreover, zero 

probabilities are bypassed using so-called smoothing techniques (Pearce, 2005; 

Witten & Bell, 1991). As pointed out in Section 2.6 above, these two conditions enable 

the computation of absolute entropy values (Equations 2 and 3) for each point in the 

sequence, providing a dynamic model of predictive uncertainty experienced by the 

listener and/or characterising the predictions that he or she would make at that point 

in the melody. 
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IDyOM is a variable-order Markov model based on n-gram methods (Manning & 

Schütze, 1999). Thus, model predictions are conditional probabilities for events given 

a preceding context, which rely on the most informative length of prior context. In 

practice, fixed-order n-gram models for all possible context lengths below a certain 

maximum bound, which can be optionally specified by the user, are computed and 

subsequently combined using a weighted average favouring higher-order n-grams 

which occurred in the training corpus (Pearce, 2005). 

 

 

 

Figure 5. Information Dynamics of Music (IDyOM). This computational model uses unsupervised 

statistical learning and variable-order Markov modelling to generate probability distributions 

over properties (e.g., absolute pitch) of the next note in a melodic sequence. Most commonly, 

IDyOM mathematically combines a long-term sub-model (LTM) trained on large musical 

corpora with a short-term sub-model (STM) acquiring statistics from the local context. One or 

more viewpoints (e.g., scale degree and pith interval) are used to represent musical structure. 

This figure is printed with permission from Marcus Pearce and also appeared in Hansen (2015). 
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As evident from Figure 5, IDyOM comprises two model components: a short-

term sub-model (STM) and a long-term sub-model (LTM). STM is an initially empty 

model acquiring knowledge from the current composition only. It is designed to 

capture dynamic expectations (Huron, 2006), resulting from local repetitions of 

motivic structure within a piece of music. LTM, on the other hand, is trained on a pre-

specified training corpus and models schematic expectations (Huron, 2006), resulting 

from long-term exposure.  

Importantly, depending on what the user aims to model, STM and LTM can be 

used in isolation or in combination (BOTH). Moreover, the LTM component can be set 

to update incrementally based on the test set (LTM+, BOTH+). For the BOTH and 

BOTH+ configurations, probability distributions generated by STM and LTM(+) are 

combined using a weighted geometric mean (Pearce, 2005).  

In addition to, or instead of, being trained on a training set, LTM can be trained 

on the test dataset itself using k-fold cross-validation. In that case, the test dataset is 

partitioned into k subsets, and LTM(+) is trained on the k-1 subsamples whereas the 

remaining one is used as test data. This process is then repeated k times (resulting in 

k folds), such that the IC of each event is estimated only once. 

IDyOM represents musical structure using a multiple viewpoint system 

(Conklin & Witten, 1995) (Figure 5). This implies that each event in the sequence is 

characterised by one (or more) numeric values representing the specific feature(s) 

which the user has pre-specified. This could, for instance, be absolute pitch, scale 

degree, pitch interval, note duration, or inter-onset interval. Note that some of these 

are basic viewpoints (e.g., absolute pitch, note duration) whereas others are derived 

viewpoints (e.g., scale degree derived from the modulo-12 pitch interval from the 

tonic; and inter-onset interval derived from the difference in onset for the current 

and previous notes). Multiple viewpoints can be linked together, such that each event 

is represented by a pair of values instead of a single value.  
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IDyOM requires both a (set of) basic target viewpoint(s) whose members it 

generates probability distributions over as well as a (set of) source viewpoint(s) to 

use in prediction. Because source viewpoint distributions are converted into target 

viewpoint distributions as part of the modelling procedure (Figure 5), source 

viewpoints need to be meaningfully related to the target viewpoint in order to be 

considered (e.g., note duration alone cannot be used to predict absolute pitch). 

Alternatively to pre-specification, source viewpoints can also be selected using an 

automated selection procedure picking the (combination of) viewpoint(s) leading to 

the lowest average IC (i.e. the model that is least “surprised” on average by what it 

experiences). 

Typically, better prediction performance is obtained with variable-order 

models compared to fixed-order models and for combined short- and long-term sub-

models compared to each component used in isolation (Pearce, 2005; Chapter 6). 

However, combined, variable-order models are not always cognitively relevant. For 

instance, it would be irrelevant to include LTM if the music uses a scale that the 

listener has never heard before. Similarly, configuring the long-term component to 

learn incrementally across pieces (i.e. LTM+) would only be suitable if the listener is 

indeed exposed to the musical pieces in that particular order. 

To recap, when running IDyOM (e.g., Chapter 3), the user typically specifies:  

 

[1] a target dataset to generate predictions about;  

[2] target viewpoint(s) specifying which musical feature(s) to be predicted;  

[3] source viewpoint(s) to use in prediction;  

[4] an order bound setting the upper limit for context length;  

[5] sub-model configuration (i.e. STM, LTM, LTM+, BOTH, or BOTH+);  

[6] training dataset(s) for the LTM component (if this is used); and 

[7] the number of resampling folds (if cross-validation is applied).  
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IDyOM writes output to a data file containing probability, IC, and absolute entropy for 

each event in the sequence comprising the target dataset. In addition, probabilities 

for all possible target viewpoint values that did not occur at the present point (i.e. the 

complete probability distribution from which entropy was computed) is available in 

the output as well as information concerning the model order and relative STM and 

LTM weights applied for each event. Various basic viewpoint sequences (e.g., absolute 

pitch, duration, key signature, and mode) are also printed to facilitate identification of 

events in the output. This provides all the material needed to estimate 

unexpectedness and predictive uncertainty as indicated by the P distribution plotted 

in green in Figure 4. A method for obtaining empirical data regarding listener 

expectations will now be introduced. This corresponds to the Q distribution, plotted 

in red in Figure 4. 

 

2.8. Expectation in behaviour: The Predictive Uncertainty Paradigm 

Different behavioural paradigms have been developed for assessing expectations in 

music listening (reviewed by Huron, 2006, pp. 41-57). Due to the nature of the work 

presented in this dissertation, the main focus here will be on paradigms that enable 

the collection of data pertaining to uncertainty and expectedness experienced by 

listeners in relation to the pitch of notes in a melodic sequence. This can be 

investigated with implicit as well as explicit approaches which will be reviewed 

below. Broadly speaking, the main methodologies can be categorised into: (a) 

production paradigms where the participants provide expected continuations in one 

form or another; and (b) perception paradigms providing data concerning the 

participants’ experience (usually retrospectively). 

In production paradigms, participants are typically exposed to a melodic 

sequence and asked to sing (Carlsen, 1981; Carlsen, Divenyi, & Taylor, 1970; Unyk & 

Carlsen, 1987), compose or improvise (e.g., on a piano keyboard) either a single 
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continuation tone (Abe & Hoshino, 1990; Povel, 1996) or a full completion of the 

melody (Larson, 1997; Schmuckler, 1989; Thompson, Cuddy, & Plaus, 1997). 

Importantly, these methods often only provide expectedness data regarding a single 

continuation tone (i.e. the most expected one). With data from multiple participants, 

however, between-participant expectedness distributions can be computed from 

response frequencies (Carlsen, 1981), potentially giving rise to uncertainty data on 

the group level.  

Speaking against the applicability of production paradigms for studying musical 

expertise, they pose considerable task demands because response methodologies 

tend to rely on familiarity with singing, musical notation, or specific musical 

instruments. This may exclude non-musicians from participation (Tillmann, Poulin-

Charronnat, & Bigand, 2014). Moreover, these tasks tend to call for highly explicit 

processing, involving intellectual considerations that are unlikely to be prominent in 

real-time music listening. In this regard, perceptual paradigms may be more 

ecologically valid. 

Probe-tone tasks, where participants rate the perceived goodness-of-fit for 

different continuations on the basis of a tonal context (Krumhansl & Shepard, 1979), 

represent some of the most widely used perceptual paradigms for investigating 

melodic expectation. Although the first version of this paradigm restricted itself to 

scales (Krumhansl & Shepard, 1979), contexts were quickly extended to include 

chords and harmonic cadences (Krumhansl, 1990; Krumhansl & Kessler, 1982), and 

ultimately melodies (Schmuckler, 1989). Using this methodology to collect probe-

tone ratings for multiple continuations of each melody, within-participant 

expectedness distributions have been obtained for simple implicative intervals 

(Cuddy & Lunny, 1995) as well as for a range of musical styles, including Finnish 

spiritual hymns (Krumhansl, Louhivand, Toiviainen, Jarvinen, & Eerola, 1999), North-

Sami yoiks (Krumhansl et al., 2000), and British folk songs, atonal Webern songs, and 
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Chinese folk songs (Krumhansl, 1995; Schellenberg, 1996). Since these data pertain to 

individuals, they can easily be associated with measures of musical experience, 

altogether making probe-tone paradigms better suited for expertise research than 

production paradigms, especially when prioritising a receptive focus.  

Critics have, however, pointed out that, due to interruption of the musical flow, 

probe-tone ratings may reflect expectations specific to tonal closure (Aarden, 2003). 

Pearce et al. (2010) accommodated this concern by continuing the melody beyond 

the probe tone, but displaying a clock that silently counted down to its position. This 

visually-cued paradigm is especially suitable for isochronous stimuli, facilitating 

unambiguous interpretation of the clock countdown. With more ecologically valid, 

rhythmically diverse melodies, however, the clock steps either become non-

isochronous or need to rely on underlying metrical structure, thus complicating the 

task for participants with limited musical training. Other uninterrupted paradigms 

exist, e.g. using continuously sampled predictability ratings (Eerola et al., 2002) or 

goodness-of-fit ratings in relation to a concurrently sounded probe tone (Toiviainen 

& Krumhansl, 2003). Continuous paradigms may be suboptimal for assessing 

unexpectedness for different continuations of the same melody, in that notes beyond 

the first continuation tone may affect ratings retrospectively. In other words, 

manipulating the probe-tone, in effect, changes two intervals, while transposing the 

whole continuation causes tonal instability. Paradigms that use continuous response 

methodologies, in particular, entail methodological challenges, including difficulties 

in matching responses unambiguously to discrete events (Schubert, 2010). Since 

modelling at the event level is at the crux of the Markovian procedures applied here 

(Section 2.7), continuous response sampling overall seems unsuitable. Hence, despite 

the clear advantage of continuous probe-tone paradigms for many other purposes, 

the stimuli used here need to be interrupted to obtain valid uncertainty data. 
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It has, furthermore, been argued that even probe-tone paradigms disadvantage 

non-musicians because explicit verbalisation leads to psychophysical rather than to 

music-syntactic responses (Bigand & Poulin-Charronnat, 2006). Although such 

differences could in fact be a hallmark of musical expertise itself, priming 

methodologies offer a gateway into non-expert implicit processing. 

Priming paradigms, a subgroup of perception paradigms, capitalise on the fact 

that expected events facilitate more general aspects of cognitive processing (Neely, 

1991). Specifically, the relationship between a prime and a target is manipulated 

systematically, and the response time in an unrelated task is then taken as a measure 

of expectedness. In the musical version of this paradigm (reviewed by Tillmann, 

2005), stimuli have mostly comprised chord sequences. Melodic experiments have, 

however, also been conducted with speeded judgement tasks pertaining to melodic 

contour (i.e. rising, falling, or same) (Aarden, 2003), intonation (i.e. in-tune vs. out-of-

tune) (Marmel & Tillmann, 2009; Marmel, Tillmann, & Dowling, 2008), or timbre 

(Marmel & Tillmann, 2009; Marmel, Tillmann, & Delbé, 2010; Omigie et al., 2012). 

Despite their potential relevance for expertise questions, implicit paradigms will not 

be applied here (apart from neurophysiological measures, see Section 2.9). This 

decision reflects that probe-tone methods may reveal expertise-related differences in 

the conscious availability of predictive processing knowledge. This may complement 

previous work focusing on similarities rather than differences between musicians 

and non-musicians (e.g., Bigand, 2003; Bigand & Poulin-Charronnat, 2006). 

To this end, in addition to unexpectedness data obtained with the classical 

probe-tone paradigm, explicit ratings pertaining to uncertainty would also be 

relevant. This suggestion has precursors in terms of data on perceived tension or 

stability (Bigand, 1997), completeness of the phrase (Bigand, 1993; Krumhansl, 

1987), expectancy specificity or strength (Schmuckler, 1989), or melodic 

predictability (Eerola et al., 2002), typically obtained using a 7-point Likert-type scale 
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or continuously sampled response devices. Although these tasks have not referred to 

uncertainty as such, exceptionally high correlation between some measures (e.g., r = 

.96 for expectancy specificity and strength in Schmuckler, 1989) suggests that they 

could be capturing related aspects of a common underlying psychological 

phenomenon. 

Next, the question arises how unexpectedness distributions should be 

quantified and related to probability distributions resulting from models of musical 

exposure. Different ways of inferring uncertainty from distributional expectedness 

data exist in the literature. For instance, using data from a production paradigm, 

Carlsen (1981) computed a coarse measure, simply characterising implicative 

intervals producing low maximum frequencies as uncertain. That is, in practice, only 

the most expected event was taken into account. Schmuckler’s (1989) difference 

score between minimum and average unexpectedness ratings obtained in a 

perceptual task only slightly improved this method. That these scores remained 

insensitive to distributional properties is evident from their lack of correlation with 

expectancy specificity/strength for melodic stimuli (Schmuckler, 1989).  

Similar limitations apply to previous ways of comparing distributions 

representative of subjective listener expectations and objective exposure. Specifically, 

previous studies have applied Pearson and partial correlation measures (Eerola, 

Louhivuori, & Lebaka, 2009; Krumhansl et al., 1999, 2000; Krumhansl, 1990; Loui et 

al., 2010). In contrast to information-theoretic measures which were originally cast as 

probabilistic measures (Section 2.6) and later re-cast as models of cognition (Section 

2.4), correlational measures were first of all designed to assess linear dependence 

between two numerical variables. Thus, absolute (Equation 3) and relative entropy 

(Equation 5) are expected to outperform earlier approaches, both in terms of 

cognitive validity and sensitivity to distributional information. 



51 

Summing up, to test the predictive coding theory of musical expertise 

presented here, there is a need for distributional data concerning listeners’ 

unexpectedness and predictive uncertainty which can be directly related to 

computational model estimates using information-theoretic measures (Sections 2.6-

7). The Predictive Uncertainty Paradigm (Figure 6) is an explicit, perceptual paradigm 

that meets these requirements. Specifically, it comprises two experimental phases 

where participants first listen to incomplete melodies, providing explicit ratings of 

perceived uncertainty, using a 9-point Likert-type scale ranging from “highly 

uncertain” to “highly certain” (Phase A). Subsequently, the melodies are heard again 

multiple times, each time followed by one of nine different probe-tone continuations 

to which participants provide explicit unexpectedness ratings on a similarly designed 

scale (i.e. “highly unexpected” to “highly expected”) (Phase B). The probe tones span a 

chromatic set centred on either the median pitch of the context (Study 1) or on the 

pre-probe-tone pitch (Study 2) and are presented in direct continuation of the 

context. All stimuli are randomised within each phase. Importantly, explicit 

uncertainty ratings (Phase A) are always collected before unexpectedness ratings 

(Phase B) to ensure that perceived levels of uncertainty are not influenced by hearing 

a set of actual continuations. Potential closure effects are, furthermore, alleviated by 

asking participants explicitly not to think of the last note as the final note in the 

phrase. From the distribution of unexpectedness ratings obtained in Phase B, yet 

another measure of uncertainty is inferred, simply by normalising the distribution 

such that it sums to unity and computing its absolute entropy. After having 

introduced an elegant behavioural paradigm for obtaining data for the Q distribution 

in Figure 4, neurophysiological measures of musical expectations will now be 

introduced. 
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Figure 6. The Predictive Uncertainty Paradigm. In Phase A, participants provide 9-point Likert-

type ratings of explicit uncertainty about the immediate pitch continuing an interrupted melodic 

context. In Phase B, similar ratings are provided regarding perceived unexpectedness in 

response to nine different chromatically distributed probe-tone continuations. Another 

uncertainty measure is finally inferred by computing the absolute (Shannon) entropy of the 

distribution of unexpectedness ratings. 
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2.9. Expectation in neurophysiology: Mismatch Negativity (MMN) 

In neurophysiological research, aspects of predictive music processing, including its 

expertise-related correlates, have been studied in terms of the Mismatch Negativity 

response (MMN) (Trainor & Zatorre, 2015). This response, representing a negative 

deflection in the event-related potential (ERP), was first discovered and reported in 

electroencephalography (EEG) research by Näätänen, Gaillard, and Mäntysalo (1978). 

They used a classical oddball paradigm where deviant stimuli, differing on frequency 

or intensity, were infrequently and unpredictably inserted into a sequence of 

constantly repeating, isochronous standard tones. The MMN emerged as a difference 

wave peaking in the 150-250 ms post-stimulus range when subtracting the averaged 

response to standards from the averaged response to deviants (cf. Figure 7).  

Since its original discovery within the auditory modality, MMN responses 

have been found in all sensory modalities, including vision (Kimura, Schröger, & 

Czigler, 2011; Pazo-Alvarez, Cadaveira, & Amenedo, 2003), somatosensory 

perception (Butler et al., 2011), nociception (Hu, Zhao, Li, & Valentini, 2013), and 

olfaction (Pause & Krauel, 2000). Furthermore, it can be used as a marker of different 

neurological and neuropsychiatric diseases (Näätänen et al., 2011) and of musical 

expertise (Vuust et al., 2011). In the following, further characteristics of this brain 

response will be summarised, including a few practicalities entailed in measuring it, 

previous expertise-related findings will be introduced, and theories will be discussed 

regarding which types of neural computations underlie the response and how all this 

relates to predictive coding. Finally, it will be proposed that MMN paradigms can be 

adopted to study expertise effects on cognitive representations in music. 
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Figure 7. Neurophysiological profile of the MMNm. (A) Similar to its electrophysiological 

counterpart (not depicted here), the magnetic mismatch negativity response MMNm (bold) 

appears in the 150-250 ms post-stimulus time range when subtracting the average time-locked 

MEG response to standards (dashed) from that to deviants (solid), differing from the standards 

on one or more stimulus features (e.g., frequency, intensity, duration, location). This plot depicts 

the typical MMNm signal recorded from a supratemporal gradiometer sensor (cf. Study 4). (B) As 

evident from this panel, based on source reconstruction using minimum L1 norm estimation, the 

neural generators of the auditory MMNm are typically located in the primary and secondary 

auditory cortices as well as in the inferior frontal cortices. This figure was adapted from 

Tervaniemi and Brattico (2004). 



55 

Although the MMN was first discovered using EEG, it can also be reliably 

detected with magnetoencephalography (MEG) where its magnetic counterpart is 

referred to as the MMNm, a supratemporal deflection of the event-related field (ERF). 

MEG is a neurophysiological method measuring the magnetic fields arising from the 

minute electrical currents in the brain that are measured with EEG (Papanicolaou, 

2009). More specifically, the MEG system used in the present research is the Elekta 

Neuromag TRIUX which has 102 magnetometers, measuring the magnetic field, and 

204 planar gradiometers measuring the magnetic field gradients (i.e. the rate of 

change in magnetic fields over distance). Because these magnetic fields are 

perpendicular to the underlying electrical currents generating them, MEG is most 

sensitive to neural sources that are tangentially aligned with the scalp surface. 

Compared to magnetometers which may pick up subcortical activity, the planar 

gradiometers used in the present work (Study 4) are particularly sensitive to 

superficial sources.  

These sensitivity characteristics are especially important in the context of the 

auditory MMN(m) response whose neural generators (cf. Figure 7) are distributed 

between sources in the primary and secondary auditory cortices (bilaterally) and 

sources in the inferior frontal gyrus (predominantly right-laterally) (Schönwiesner et 

al., 2007). Notably, due to the orientation of these neuronal assemblies, MEG sensors 

are primarily sensitive to the supratemporal MMNm source (Hämäläinen, Hari, 

Ilmoniemi, Knuutila, & Lounasmaa, 1993), making this method superior to EEG for 

research where these two sources need to be dissociated. As evident below, this may 

be highly beneficial, for instance, when assessing signal additivity which tends to 

differ between these sources (Paavilainen, Mikkonen, et al., 2003). 

The frontal MMN(m) generator is involved in involuntary attention switching 

mechanisms (Näätänen, Paavilainen, Rinne, & Alho, 2007). The MMN(m) itself, on the 

other hand, is primarily viewed as a pre-attentive response in that it is also elicited in 
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the absence of attention, e.g. in comatose patients (Fischer, Morlet, & Giard, 2000; 

Näätänen et al., 2007; see, however, Sussman, 2007, for a review of different 

attentional influences on standard formation and deviance detection).  For this 

reason, participants are usually asked to watch a silent movie during an MMN(m) 

experiment while ignoring the presented stimuli. This process serves to circumvent 

attentional components like the N2b response which sometimes overlaps with the 

MMN(m) (Folstein & Van Petten, 2008; Näätänen & Gaillard, 1983). 

MMN(m) measurements may also be enhanced by refining and extending the 

classical oddball paradigm itself. This is exemplified by the optimum multi-feature 

paradigms where multiple deviant types (e.g., frequency, intensity, duration, location, 

and tone omission) are included in the same experimental block separated by as few 

as one standard stimulus (Näätänen, Pakarinen, Rinne, & Takegata, 2004), or none at 

all (Pakarinen, Huotilainen, & Näätänen, 2010). Because deviants in these paradigms 

contain invariant features on all other parameters, they function as standards for the 

other deviants. Thus, more multifaceted data can be obtained in shorter time, making 

this method especially suitable for diagnosis and for monitoring a multitude of 

medical conditions (Näätänen et al., 2012). This extends beyond clinical contexts to 

investigations of neurodevelopment (Lovio et al., 2009) and skill-related individual 

differences (Pakarinen, Takegata, Rinne, Huotilainen, & Näätänen, 2007).  

The optimum multi-feature paradigms have inspired developments along these 

lines in the musical domain. For instance, adopting one of the first multi-feature 

paradigms described above (Näätänen et al., 2004), somewhat surprisingly, 

Tervaniemi, Castaneda, Knoll, and Uther (2006) only obtained musical expertise 

effects for location deviants. This could be due to either limited ecological validity of 

the stimuli or to the inclusion of amateur musicians, engaging in practise to a lesser 

extent than most professional musicians.  
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The importance of musically relevant stimuli is supported by the considerable 

context-dependency of expertise as demonstrated by psychological research 

(Ericsson & Towne, 2010; de Groot, 1978). This has been accommodated by musical 

MMN paradigms incorporating melodic material (e.g., Brattico, Tervaniemi, Näätänen, 

& Peretz, 2006). Those of these studies that have demonstrated greater MMN 

amplitudes in musicians, have, however, also typically included amateurs rather than 

professional musicians (Fujioka et al., 2004, 2005).  

Studies by Vuust and colleagues (2011; 2012a; 2012b; 2015), introducing a 

musical multi-feature paradigm (Figure 8), accommodate the needs for both 

ecological validity and sufficiently high expertise levels. Specifically, this paradigm is 

based on repetitions of a characteristic four-note pattern corresponding to chord 

arpeggiations in the order “lowest-highest-middle-highest”. This pattern, named after 

the Italian composer Domenico Alberti (1710–1740) who used it extensively in early 

18th-century keyboard music, is widely used for accompaniment across historical 

eras, musical instruments, and genres (Fuller, 2015). Most typically, in this musical 

multi-feature paradigm, every second occurrence of the third note in the pattern (the 

one termed “middle” above) serves as standard whereas the remaining occurrences 

deviate in terms of e.g. pitch,4 intensity, perceived location, timbre, timing, or by 

introducing pitch slides (Petersen et al., 2015; Timm et al., 2014; Vuust et al., 2011, 

2012a, 2012b, 2015). The fact that the pitch level of the pattern changes each time all 

deviant types have appeared just further contributes to stimulus variability (Figure 

8). 

 

                                                           
4
 Note that the term “pitch” is used here, and henceforth, instead of “frequency”. Whereas many 

classical MMN studies (e.g. Näätänen et al., 1978) have used pure-tone stimuli and manipulated the 
frequency of the sine wave (in units of Hz), the studies by Vuust and colleagues have used complex 
tones and have manipulated the frequency of the fundamental pitch in units of cents, which have a 
more direct interpretation in terms of perceived pitch. This is in particular necessary when using 
modulating stimuli (as in Vuust et al. and in Study 4 included here). 
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Figure 8. The musical multi-feature paradigm. This paradigm uses the Alberti-bass figure, well-

known from various musical repertoires, to assess MMN(m) responses time-locked to standards 

and deviants coinciding with the third note in the pattern. Multiple deviant types can be 

incorporated into a single stimulus block, enabling the experimenter to quickly obtain a 

multidimensional, neurophysiological profile of the receptive expertise of individual participants. 

A version of this figure appeared, for instance, in Vuust et al. (2011, 2012a, 2012b). 

 

Despite recent efforts to increase ecological validity in musical MMN(m) 

paradigms even further, e.g. resulting in melodic multi-feature paradigms capable of 

quickly distinguishing between folk musicians and non-musicians (Tervaniemi, 

Huotilainen, & Brattico, 2014) and between classical, jazz, and rock musicians 

(Tervaniemi, Janhunen, Kruck, Putkinen, & Huotilainen, 2015), to my knowledge, no 

direct comparisons of expertise effects across paradigms have thus far been 

conducted within the same experimental session. Such studies would be necessary to 

fully investigate the context-dependency of expertise effects on musical prediction 

capabilities, as demonstrated by the MMN. 

In this regard, an acknowledgement of previous findings relating to expertise 

enhancements of the MMN response is justified. This work overall capitalises on the 
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fact that increasing the salience of deviants or, alternatively, increasing the 

discrimination accuracy of participants, may lead to increased amplitude and 

decreased peak latency of the MMN response (Näätänen et al., 2007). By extension, 

adjustments in the opposite direction may have contrasting effects. This principle 

generalises to stimuli presented in musical paradigms (Vuust et al., 2015). 

Following the same logic, increased MMN(m) amplitudes, and sometimes 

shorter peak latencies, have been found in musicians compared to non-musicians in 

response to deviants in pitch and contour (Fujioka, Trainor, Ross, Kakigi, & Pantev, 

2004, 2005; Lopez et al., 2003), rhythm (van Zuijen, Sussman, Winkler, Näätänen, & 

Tervaniemi, 2005; Vuust et al., 2009), and for unexpected tone omissions (Rüsseler, 

Altenmüller, Nager, Kohlmetz, & Münte, 2001). Again, however, context matters, in 

that expertise advantages are sometimes restricted to relevant cases where pitch 

mistunings are embedded in musical chords (Koelsch, Schröger, & Tervaniemi, 1999) 

or are preceded by a musical context (Brattico, Näätänen, & Tervaniemi, 2001). Long-

term musical training may even increase the potential for short-term plasticity, as 

demonstrated by within-session increases in MMNm amplitude elicited by deviants in 

abstract regularities (Herholz, Boh, & Pantev, 2011). Recent findings of enhanced 

MMN amplitudes in jazz musicians compared to classical and rock/pop musicians 

further attest to the great potential of multi-feature paradigms for investigating 

stylistic specialisation in music (Vuust et al., 2012b).  

A greater theoretical understanding of the neural representations underlying 

the MMN response would be conducive to pursuing this goal. Traditionally, the MMN 

has been interpreted as a change detection mechanism, evident of ‘sensory 

intelligence’ in the auditory cortex (Näätänen, Tervaniemi, Sussman, Paavilainen, & 

Winkler, 2001), which automatically and pre-attentively compares incoming sensory 

input to an echoic-memory trace (Näätänen, Paavilainen, & Reinikainen, 1989). 

Whereas this may be the explanation that most naturally emerges from the initial 
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findings reported by Näätänen, Gaillard, and Mäntysalo (1978), later demonstrations 

of MMN effects for more abstract environmental regularities challenge this account in 

ways that will now be described (reviewed by Paavilainen, 2013). Such abstract 

features include patterns resulting from feature conjunctions (Gomes, Bernstein, 

Ritter, Vaughanm, & Miller, 1997; Sussman, Gomes, Nousak, Ritter, & Vaughan, 1998), 

ascending or descending pitch motives (Saarinen, Paavilainen, Schöger, Tervaniemi, & 

Näätänen, 1992) or scales (Tervaniemi, Maury, & Näätänen, 1994), or from consistent 

alternations between presenting sounds to the right and the left ear (Takegata, 

Paavilainen, Näätänen, & Winkler, 2001). Because each of the constituent features 

contributing to a rare conjunction in Gomes et al. (1997) occurred no less frequently 

than other features overall, the MMN response could only be ascribed to an abstract 

representation of specific feature conjunctions rather than of the features themselves. 

Similarly, because the pitch level of the two-note motives used by Saarinen et al. 

(1992) varied for each new presentation of a standard or deviant motif, the standard 

representation must have pertained to the pitch relationship between notes rather 

than to the notes themselves. Also speaking against the interpretation of the MMN as 

resulting from a simple sensory memory trace, MMN-like responses have been found 

for notes in a melody that deviate from the scale or are slightly out of tune (Brattico et 

al., 2006). Taken together, these studies suggest that the underlying representations 

giving rise to MMN responses sometimes rely both on abstract relationships and 

long-term memory outside the immediate context, e.g. relating to musical scales and 

tuning systems. In other words, not unlike the accounts of cognition and neuroscience 

previously presented with reference to statistical learning (Section 2.5) and 

predictive coding (Section 2.4), MMN representations appear to retain the complete 

history of auditory stimulation (Winkler, 2007).  

Yet other critics have questioned the traditional memory-based explanation by 

formulating an Adaptation Hypothesis (May & Tiitinen, 2010). According to this view, 
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the MMN simply results from latency and amplitude modulations of the N1 response 

due to activation of fresh afferents that were not yet adapted (see Näätänen, Jacobsen, 

& Winkler, 2005, for a response to this criticism). 

With interesting implications for the perspective on musical expertise 

proposed in the current dissertation (Sections 2.3-6), predictive coding has been 

promoted as an explanatory framework that has the potential to resolve the 

controversy between memory-based and adaptation-based approaches to 

understanding the MMN(m) response (Garrido et al., 2009; Winkler & Czigler, 2012). 

Amongst other things, this suggestion gains support from the apparent generality of 

MMN(m) processes, as exemplified by some of the previously mentioned findings; 

specifically that it occurs in conditions without increased afferent input, such as 

sound omissions (Raij, McEvoy, Mäkelä, & Hari, 1997) and decreases in intensity 

(Schirmer, Simpson, & Escoffier, 2007) and duration (Näätänen et al., 1989), across 

sensory modalities, and across levels of stimulus complexity and representational 

abstraction. The predictive coding-based account has, furthermore, been validated by 

promising computational models of MMN data on a trial-by-trial basis, capitalising on 

empirical Bayes and free-energy minimisation (Lieder, Daunizeau, Garrido, Friston, & 

Stephan, 2013; Wacongne et al., 2012). Preliminary theoretical efforts have, 

moreover, been made to relate this updated view of MMN to other types of early 

electrophysiological responses (e.g., P50, N1, N2b, early anterior negativity, and 

evoked gamma-band responses) in a wider framework of predictive processing in 

audition (Bendixen, SanMiguel, & Schröger, 2012). Although it is beyond the scope of 

this dissertation to review this work in further detail, it suffices to conclude that 

evidence accumulates for the MMN(m) as reflecting predictive optimisation of 

cognitive representations. 
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2.10. A novel framework for scientific studies of musical expertise 

In the previous sections, it has been argued that romanticised concepts of musical 

excellence and genius should be discarded and replaced with a scientific concept of 

musical expertise understood in terms of predictive processing optimisation. 

Predictive coding and statistical learning have been presented as unifiable 

neuroscientific and cognitive-scientific theories regarding these processes, which can 

be formalised using well-established measures from information theory. This renders 

the presented theory of predictive coding of musical expertise available to empirical 

investigation using computational, behavioural, and neurophysiological methods.  

As substantiated above, however, musical expertise constitutes a highly 

complex and multidimensional phenomenon. In acknowledgement of this complexity, 

the current analytical framework breaks down musical expertise into six perspectives 

(Table 1). Each of these perspectives generates an overall research question which 

can be related to findings in psychological expertise research and be addressed 

empirically in the specific context of musical expertise, using a distinct subset of 

approaches from the methodological battery presented above (Sections 2.5-9).  
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Table 1. An analytical framework for studying musical expertise. Each of the six perspectives 

can be characterised by an overall research question which can be addressed with 

approaches from the methodological battery described in Sections 2.5, 2.6, 2.7, 2.8, and 2.9. 

Perspectives Research questions Methods 

Origin How does expertise arise? IDyOM: Unsupervised statistical 

learning 

Behaviour: Probe-tone ratings before 

vs. after statistical learning 

Neurophysiology: MMN(m) 

Cognitive 

representations 

How does expertise affect 

cognitive representation of 

musical structure? 

IDyOM: Viewpoints, order bound, sub-

model configurations 

Behaviour: Statistical learning 

Neurophysiology: MMN(m) 

Predictive 

uncertainty 

How does expertise affect the 

uncertainty of listener 

expectations? 

IDyOM: Entropy 

Behaviour: Explicit and inferred 

uncertainty 

Predictive 

flexibility 

How does expertise affect the 

ability to specify, access, and 

prioritise competing predictive 

models? 

IDyOM: Training corpora 

Behaviour: Expectedness, explicit and 

inferred uncertainty 

Neurophysiology: MMN(m) 

Conscious 

availability 

How does expertise affect the 

availability of predictive models to 

conscious introspection? 

Behaviour: Explicit and inferred 

uncertainty expectedness  

Neural 

correlates 

How does expertise affect brain 

function? 

IDyOM: Information content, entropy 

Neurophysiology: MMN(m) 

 

 

2.10.1. Origin 

The first analytical perspective, origin, relates to the question about where musical 

expertise arises from. To reiterate, the classical emphasis on innate giftedness (e.g., 

Galton, 1869) was already called into question by early cognitive expertise research 

demonstrating highly domain-specific, and thus, plausibly, acquired, pattern 

recognition skills in chess experts (Chase & Simon, 1973; de Groot, 1966). Subsequent 

empirical work in music and beyond has only consolidated this criticism (Howe & 

Davidson, 2003; Howe et al., 1998). Consequently, the doctrine on innate talents 

unique to the individual has been replaced by one on individualised expertise 
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acquisition under (more or less) universal cognitive constraints. In the musical 

domain such constraints have indeed been found for music listening and composition 

(Huron, 2001; Lerdahl, 1992; London, 2002; McAdams, 1989; McDermott & Hauser, 

2005; Parncutt, 1999; Thompson & Schellenberg, 2002; Tierney, Russo, & Patel, 

2011). Generalising this principle to musical learning processes seems like a natural 

step. Yet, important questions remain regarding whether specific cognitive capacities 

constitute immutable constraints or are themselves subject to expertise-induced 

plasticity. For instance, can the mechanisms for statistical learning, or those for 

auditory feature processing, be optimised through experience? 

Having established that musical expertise is predominantly acquired, 

understanding the nature of this acquisition process becomes paramount. This is 

likely to entail both implicit learning (cf. Section 2.5) and explicit instruction. In 

addition, deliberate practice has been proposed as a path to expert performance that 

incorporates elements from both (Ericsson, 2006, 2008; Ericsson, Krampe, & Tesch-

Römer, 1993). Specifically, deliberate practice designates a highly structured iterative 

process whereby aspiring experts continuously monitor their own performance, 

correcting inaccuracies accordingly with the explicit goal of improving performance. 

IDyOM directly models implicit aspects of musical skill acquisition, thus making 

it highly suitable for testing the view of predictively coded expertise as acquired 

through passive exposure. Effects of explicit instruction and deliberate practice, on 

the other hand, are much more challenging to model over longer timescales, namely 

because all three types of skill acquisition tend to go hand in hand. Although specialist 

populations like musical savants with little explicit instruction exist, linguistic and 

general cognitive deficits sometimes compromise the generalisability of results 

obtained from these groups (Hermelin, O’Connor, & Lee, 1987; Ockelford & Pring, 

2005; Young & Nettelebeck, 1995; Sloboda, Hermelin, & O'Connor, 1985). Thus, 

designing short-term experiments with systematic control of both implicitly 
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internalisable musical structure and access to explicit knowledge seems like a fruitful 

path to pursue. To this end, probe-tone ratings and/or neurophysiological 

measurements collected before and after exposure in a statistical learning paradigm 

can be compared. 

 

2.10.2. Cognitive representations 

The second analytical perspective, cognitive representations, relates to how expertise 

affects the way in which musical structure is cognitively represented. Cognitive 

representation (also “mental representation”), in this context, refers to specific 

memory for objects and events which can be used to determine whether or not a 

percept is representative of a given category (Stuart-Hamilton, 1996).  

Although psychological research provides abundant evidence that experts 

benefit from more sophisticated cognitive representations than non-experts (Chi, 

2006a), the specific manifestations and underlying mechanisms of this sophistication 

process are far from unequivocally understood. The overall consensus appears to be 

that general working memory capacity is relatively constant (Cowan, Chen, & Rouder, 

2004; Miller, 1956), but that experts represent knowledge in larger chunks (Simon & 

Gilmartin, 1973) that are both more functional, abstract, and hierarchically 

structured than non-experts’ typically more superficial representations (Chi et al., 

1981; Feltovich, Prietula, & Ericsson, 2006; Johnson & Eilers, 1998; Mayfield, 

Kardash, & Kivlighan Jr, 1999; Shafto & Coley, 2003; Tanaka, 2001; Tanaka & Taylor, 

1991). Expert perception is, furthermore, enhanced by the ability to direct attention 

towards especially pertinent aspects of the sensory input (Endsley, 2006).  

In a musical context, for instance, these characteristics emerge in terms of 

musicians’ superiority in distinguishing melodic variations maintaining the original 

underlying harmonic structure from those that deviate from it (Bigand, 1990). Non-

musicians, in this task, were sometimes deceived by surface characteristics and thus 
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unable to decode hierarchical structure. Summing up, findings in music and beyond 

support the hypothesis that cognitive representations in experts are characterised by 

greater complexity, efficiency, and domain-specific relevance. 

One key aspect of representational complexity pertains to the integration and 

segregation of composite stimulus features within a single sensory modality. While 

many theories exist regarding feature integration in the visual system (Grill-Spector 

& Weiner, 2014; Marr, 1982; Nassi & Callaway, 2009; Treisman & Gelade, 1980), this 

topic has not been studied as thoroughly in the auditory modality (Shamma, 2008). 

Arguably, expertise questions are somewhat more pertinent in audition than in vision 

due to the existence of highly specialised individuals like musicians engaging in 

extensive daily practice throughout their lives from an early age (Ericsson, 2006).  

Two competing theories make mutually incompatible predictions about skill-

related effects on expert feature processing (in music as well as in other domains). 

Specifically, either (a) expertise causes separate processing of features further up in 

the processing hierarchy, thus giving rise to an independent processing hypothesis, or 

(b) expertise causes integrated processing by shared neural resources at an earlier 

stage, thus giving rise to a contrasting dependent processing hypothesis. While the 

general expertise research reviewed above as well as findings of decreased neural 

activity sometimes associated with perceptual learning (Jäncke, Gaab, Wüstenberg, 

Scheich, & Heinze, 2001; Zatorre, Delhommeau, & Zarate, 2012) would speak in 

favour of the latter hypothesis, other findings and theories support the former 

hypothesis. For instance, an influential theory proposes that perceptual learning 

provides access to lower-level representations with higher relevance for particular 

contexts (Ahissar & Hochstein, 2004; Ahissar, Nahum, Nelken, & Hochstein, 2009). 

Moreover, more independent processing could enable experts to better track 

simultaneous progressions within individual features, which, in turn, would allow 

them to more accurately dissociate violated expectations and attribute them to the 
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relevant feature in question. This seems especially relevant in the musical domain 

where the covariance of acoustic features provides informative structural cues on 

segmentation boundaries (Hansen, 2011; Lerdahl & Jackendoff, 1983; Prince & 

Schmuckler, 2014). The contrasting hypotheses regarding more dependent or 

independent processing of acoustic features in musical experts can be resolved with 

neurophysiological methods in terms of the additivity of the MMN(m) response 

(Section 2.9). 

IDyOM offers a number of computational modelling procedures facilitating, 

specifically, the study of cognitive representations. First, the option to specify 

different source viewpoints enables the experimenter to contrast expectations 

resulting from different representations of musical structure. Such viewpoints can, 

furthermore, be linked to model the integration of multiple features. This procedure 

may be used to test hypotheses regarding expertise-induced increases in 

representational complexity. Second, restricting the maximum order bound (i.e. 

context lengths used in Markov modelling) may be used to model limitations in non-

experts’ ability to chunk elements together. Third, different sub-model configurations 

allow the experimenter to test expertise-enhanced weighting of local and global 

aspects of musical structure according to contextual relevance. Finally, the statistical 

learning paradigm (Section 2.5) offers a systematic way of assessing which cognitive 

representations are more conducive to the learnability of musical material. Future 

work along these lines may shed further light on the nature of the sophistication 

process that cognitive representations undergo. 

 

2.10.3. Predictive uncertainty 

The third analytical perspective, predictive uncertainty, relates to how expertise 

affects the uncertainty of the predictions that listeners make about musical 

continuation. Previous research on expectations in music has focused almost 
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exclusively on the expectedness perceived by listeners retrospectively in response to 

events (e.g., Huron, 2006; Krumhansl, 1990; Tillmann, 2005). This is the case for most 

studies using behavioural perception paradigms entailing the collection of explicit 

probe-tone ratings or implicit reaction time data (Section 2.8) as well as 

neurophysiological paradigms assessing expectedness, e.g. in terms of the MMN(m) 

response (Section 2.9). By comparison, very few studies have investigated the 

uncertainty with which musical predictions are generated (e.g., Schmuckler, 1989), 

and none of these have applied cognitively justified, probabilistic measures like the 

ones introduced here (Section 2.6). 

Psychological expertise research has studied uncertainty in terms of how 

realistic and adequate people’s view of their own predictive capabilities is. This has 

also been termed “calibration”, referring to the match between confidence in and 

accuracy of one’s own predictions (Glenberg & Epstein, 1987). The results are, 

however, somewhat inconsistent. Specifically, over-confidence (i.e. unrealistically 

high confidence in one’s own predictions) has been demonstrated for chess players 

(Chi, 1978), clinical psychologists (Oskamp, 1965), and experts in physics and music 

theory (Glenberg & Epstein, 1987), whereas better calibration in terms of lower over-

confidence is sometimes found in weather forecasters (Hoffman, Trafton, & Roebber, 

2006). Although these findings suggest that predictive uncertainty is highly context-

dependent, such dynamics are very likely to behave differently outside the realm of 

complex, higher-order decision making where demand characteristics may also be 

less prominent. 

As presented above, IDyOM models predictive uncertainty with absolute 

entropy (Sections 2.6-7). The generated entropy estimates can readily be compared 

to explicit uncertainty ratings as well as to uncertainty inferred from probe-tone 

ratings (Section 2.8). Furthermore, it is hypothesised that musical expertise entails 

uncertainty reduction in terms of gradual minimisation of the relative entropy 



69 

between objective probabilities and subjective uncertainty data, but this process is 

constrained by the statistical decodability of the musical material (Section 2.6). This 

prediction is consistent with results from psychological expertise research suggesting 

that expertise effects should only arise in contexts characterised by high certainty, or, 

in other words, a high proportion of epistemic (and thus reducible) uncertainty 

(Farrington-Darby & Wilson, 2006). 

  

2.10.4. Predictive flexibility 

The fourth analytical perspective, predictive flexibility, relates to how expertise affects 

the ability to specify, access, prioritise between, and maybe even suppress multiple 

stylistic models of musical expectation. To investigate this question, research is 

needed that systematically contrasts two or more types of specialised expertise, 

preferably within the same participants. Despite preliminary advances relating to 

bimusicalism (Wong, Chan, & Margulis, 2012; Wong, Chan, Roy, & Margulis, 2011; 

Wong, Roy, & Margulis, 2009) and stylistic specialisation within individuals (Münte, 

Kohlmetz, Nager, & Altenmüller, 2001; Münte, Nager, Beiss, Schroeder, & Altenmüller, 

2003; Pantev, Roberts, Schulz, & Engelien, 2001; Proverbio, Calbi, Manfredi, & Zani, 

2014; Strait, Chan, Ashley, & Kraus, 2012; Vuust et al., 2012a), musical expertise 

research is still largely dominated by categorical comparisons between musicians and 

non-musicians (Tervaniemi, 2009).  

Psychological expertise research, on the other hand, has addressed the question 

of predictive flexibility by assessing how quickly and successfully experts and novices 

adjust to sudden changes in the rules of the game. For instance, in these contexts, 

high-ranking bridge players initially show more deteriorated performance than 

novices, although they relatively quickly regain their initial superiority (Frensch & 

Sternberg, 1989). This suggests that a certain degree of conservatism characterises 

the rejection of predictive models. The experts’ inclination to stick with their original 
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internal model may, in turn, be justified by its greater sophistication (and thus 

predictive power). 

The theory on “cognitive firewalls” also provides an interesting perspective on 

predictive flexibility grounded in evolutionary biology. Specifically, this theory posits 

that while acquisition of new knowledge through statistical learning can increase 

chances of survival, failure to limit the scope of this knowledge to relevant contexts 

may conversely result in dangerous or fatal situations (Cosmides & Tooby, 2000). 

Although Huron (2006, pp. 203-18) has proposed the application of this framework 

to stylistic knowledge in music, its predictions have not yet been tested within this 

domain. If multiple predictive models specific to musical styles do indeed give rise to 

different expectations within the same listener in varying contexts, then it remains 

unknown which cues trigger different models and if and how such mechanisms are 

affected by expertise. The option to specify different training datasets for IDyOM 

strongly facilitates this endeavour. 

 

2.10.5. Conscious availability 

The fifth analytical perspective, conscious availability, relates to how expertise affects 

the availability of the brain’s predictive models to conscious introspection. The 

general expertise literature seems to be split regarding this question, adhering to 

views of expertise acquisition as comprising either a process whereby knowledge 

becomes increasingly explicit (explication theories) or one whereby it becomes 

increasingly implicit (implication theories). 

Exemplifying the implication theories, Fitts and Posner (1967) proposed a 

Multi-Stage Theory of motor skill learning according to which learning progresses 

through three specific stages. First, in the cognitive stage, the learner takes steps to 

understand the overall goal of the task and works consciously following specific 

instructions, typically needing external feedback to correct errors. Second, in the 
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associative stage, the constituent parts of the skills are put together, thus allowing 

refinement of the skill, but still following conscious strategies. Third, in the 

autonomous stage, the skill is mastered and cognitive resources are therefore 

liberated for other purposes. Anderson’s (1982) model of cognitive skill acquisition 

contains similar elements, describing instead an advancement from a declarative 

stage to a procedural stage through a process characterised as knowledge compilation.  

Dreyfus (1996) devised a related model applicable to acquisition of both motor 

skills and cognitive skills. This model comprises: (1) the novice, who uses context-

free, experience-independent rules in an algorithmic fashion; (2) the advanced 

beginner, who also incorporates some situational rules; (3) the competent, who uses 

hierarchical problem solving and takes responsibility for wrong decisions; (4) the 

proficient, who uses intuitive behaviour to achieve specific goals, but still relies on 

conscious decisions; and (5) the expert, who, given more subtle and refined 

discrimination ability, tends to respond immediately and intuitively. 

In contrast, explication theories describe an expertise-induced development 

towards more explicit processing. For instance, the bottom-up model of skill learning 

proposes that declarative knowledge develops from procedural knowledge (i.e. an 

implicit-to-explicit development) (Sun, Merrill, & Peterson, 2001; Sun, Slusarz, & 

Terry, 2005; Sun, Zhang, Slusarz, & Mathews, 2007). Along these lines, Chaffin’s work 

on memorisation strategies in a professional pianist (Chaffin & Logan, 2006; 

reviewed by Geeves et al., 2014) describes how explicit processing serves as a 

hallmark of expert musicianship.  

Again, work on deliberate practice provides a somewhat unifying perspective in 

the sense that musical experts are characterised by remaining longer in Fitts and 

Posner’s associative stage, where their actions can be consciously monitored, 

whereas expertise acquisition reaches a plateau once entering the autonomous stage 

(Ericsson & Towne, 2010). This account acknowledges both the importance of explicit 
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processing in practise and skill enhancement and the importance of intuitive 

processes in the creative act of performance itself. 

Summing up, once again, the vast majority of the psychological expertise 

literature, including music-related work emerging from this tradition, focuses on 

decision-making or production of specific motor acts. Some of these processes could 

be notably different for musical expertise, especially if adopting a receptive rather 

than productive stance (cf. Section 2.2). Thus, it remains unknown whether 

enhancement of perceptual capabilities for music follows the trajectory of the 

explication or implication theories.  

 The issue of conscious availability may be addressed in the framework of the 

Predictive Uncertainty Paradigm by collecting explicit as well as inferred measures of 

predictive uncertainty (Section 2.8).  Potentially, more directly implicit measures 

such as reaction time data and/or neurophysiological responses, like the MMN(m) 

obtained in a passive listening task, could be conducive to this goal. 

 

2.10.6. Neural correlates 

The sixth and final analytical perspective, neural correlates, relates to how expertise 

influences the structure and functioning of the human brain. This perspective views 

musical expertise in terms of neuroplasticity, which may, however, manifest itself in 

various ways that can be detected with different neuroimaging techniques. For clarity 

and simplicity, such changes will here be categorised broadly into issues of (1) 

sensitivity, (2) temporality, (3) metabolism, (4) localisation and connectivity, and (5) 

anatomical structure.   

First, changes in the sensitivity to musical stimuli may be reflected in greater 

amplitude of neural activity, as detected, for instance, in terms of the MMN(m) 

response described above (Section 2.9) (Fujioka et al., 2004) or the Early Anterior 

Negativity (EAN) typically observed in relation to syntactic violations in music (e.g., 
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Koelsch, Schmidt, & Kansok, 2002). Second, as similarly described above, the time 

course, i.e. temporality, of neural responses may also be enhanced as evident from 

shorter latencies of various ERP or ERF components (e.g., Besson & Faïta, 1995). 

Third, studies using functional Magnetic Resonance Imaging (fMRI) have shown 

expertise-related decreases or increases in cerebral blood flow associated with 

differences in metabolism in that musicians and non-musicians require varying 

amounts of blood oxygenation for neural processing of music. For instance, evident of 

more efficient motor processing, professional pianists have lower metabolic demands 

in the primary and secondary motor cortices when performing bimanual tapping task 

in comparison with non-musicians (Jäncke, Shah, & Peters, 2000). Fourth, differences 

in localisation and connectivity of brain activity may indicate that musical experts 

recruit other, potentially more sophisticated, neural networks for music processing 

(Fauvel et al., 2014; Grahn & Rowe, 2009; Vuust et al., 2005). Generally greater 

recruitment of cortico-subcortical rather than just cortico-cortical networks 

(Lehmann, 2002) is, for instance, consistent with some of the implication theories 

reviewed above regarding expertise effects on the conscious availability of predictive 

knowledge (Section 2.10.5). Fifth, musicianship is associated with increases in both 

grey (e.g., Bermudez, Lerch, Evans, & Zatorre, 2009; Gaser & Schlaug, 2003) and white 

matter (e.g., Bengtsson et al., 2005; Schlaug, Marchina, & Norton, 2009) in the brains 

of practising musicians. 

 Methodologically, the indices of expertise-induced neuroplasticity just 

summarised can be related to information-theoretic measures estimated by IDyOM to 

investigate predictive processing of music in the brain. This promising line of work is 

still in its infancy, but has already been preliminarily pursued for information content 

(Pearce et al., 2010) and entropy (Lindsen, Pearce, Wiggins, & Bhattacharya, 2012). 

Also, very importantly, the sixth and final perspective constitutes a meta-perspective 

whose methodologies can be used to address pertinent questions raised by the 
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previous five analytical perspectives. This potential receives further exemplification 

in the following.  

In Section 2.10.2, two hypotheses were proposed in relation to training-induced 

effects on cognitive representation. To recap, musical expertise was hypothesised to 

cause either more dependent processing or more independent processing of stimulus 

features. Although overlaps in neural processing have previously been investigated in 

terms of signal additivity of the MMN(m) response, such neurophysiological work has 

not framed this topic in the context of expertise. Specifically, earlier studies have 

compared an empirical MMN(m) resulting from double or triple deviants, differing 

from the standard on two or three features, to a modelled MMN(m) corresponding to 

the sum of responses for the relevant single deviants. Full correspondence between 

these two MMNm responses has been taken to indicate independent neural 

processing, whereas under-additive responses, where the modelled MMNm exceeds 

the empirical one, have been interpreted as signs of overlapping (i.e. dependent) 

processing.  

Using this method, MMN(m) additivity has been established for simple acoustic 

features like frequency, intensity, stimulus onset asynchrony (SOA), and duration 

(Levänen, Hari, McEvoy, & Sams, 1993; Paavilainen, Mikkonen, et al., 2003; 

Paavilainen, Valppu, & Näätänen, 2001; Schröger, 1995; Wolff & Schröger, 2001). 

Further source reconstruction studies have corroborated that separate neural 

populations process these features (Giard et al., 1995; Levänen, Ahonen, Hari, 

McEvoy, & Sams, 1996; Molholm, Martinez, Ritter, Javitt, & Foxe, 2005; Rosburg, 

2003). Independent processing of inter-aural time and intensity differences 

(Schröger, 1996), phoneme quality and quantity (Ylinen, Huotilainen, & Näätänen, 

2005), as well as attack time and even-harmonic attenuation in timbre perception 

(Caclin et al., 2006) have similarly been demonstrated in terms of MMN additivity. 

Additivity also shows that MMN responses to infrequent feature conjunctions are 
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separable from MMNs in response to deviants in simple (Takegata, Paavilainen, 

Näätänen, & Winkler, 1999) or abstract features (Takegata, Paavilainen, et al., 2001). 

This is similarly corroborated by source reconstruction (Takegata, Huotilainen, 

Rinne, Näätänen, & Winkler, 2001). 

 Lack of MMN(m) additivity also provides important information about feature 

processing mechanisms. For instance, this method has demonstrated that abstract-

feature MMN responses relating to changes in the direction of frequency and intensity 

changes (Paavilainen, Degerman, Takegata, & Winkler, 2003), timbral changes (Caclin 

et al., 2006), or vowel and pitch information when listening to sung stimuli (Lidji, 

Jolicœur, Moreau, Kolinsky, & Peretz, 2009) are processed in combination. Overall, 

these trends for under-additivity are stronger for triple than for double deviants 

(Caclin et al., 2006; Paavilainen et al., 2001). Moreover, in contrast to the temporal 

MMN generator, the frontal MMN generator is characterised by underadditivity, thus 

suggesting that it reflects more integrated processing (Paavilainen, Mikkonen, et al., 

2003; see, however, Wolff & Schröger, 2001, for feature-specific variations in this 

pattern). In the light of this work, MMN(m) paradigms focusing on signal additivity 

offer a highly adequate means of investigating expertise-related effects on cognitive 

representation hypothesised by the second analytical perspective using the methods 

of the sixth perspective. 

 

2.11. Research questions and hypotheses 

The remaining part of this dissertation comprises four studies aiming to realise a 

small, but significant, selection of the potential research agendas outlined thus far. 

Specifically, two overall research questions will be addressed: 
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A) To what extent may key aspects of musical expertise, including its manifestation, 

specialisation, and acquisition, be captured by the Predictive Coding of Musical 

Expertise Theory (which emerges from the preceding literature review and is depicted 

in Figure 9)? 

B) Are neural mechanisms for auditory feature processing subject to expertise-related 

neuroplasticity, and if so, how do these effects manifest themselves? 

 

Two behavioural experiments using the Predictive Uncertainty Paradigm 

(Studies 1-2) and a systematic re-analysis of data from previous experiments (Study 

3) were designed to address the former question. To address the latter question, an 

MEG experiment combining a classical oddball paradigm with a musical multi-feature 

MMNm paradigm was designed (Study 4). Before proceeding to introduce these 

studies one by one, the aforementioned theory will be briefly summarised. 

The Predictive Coding of Musical Expertise Theory (Figure 9) offers a 

framework for rationalising experiential aspects of musical expertise acquisition and 

for modelling this process in the context of predictive coding theory. At the centre of 

this theory as it is depicted in Figure 9, one finds the musical event. In fact, each 

musical event evokes a cycle of surprise, learning, and uncertainty in the listener. In 

other words, before an event, the listener generates predictions based on an internal 

generative model taking relevant aspects of the musical context into account. These 

predictions are characterised by a level of uncertainty that can be quantified in terms 

of absolute entropy. The musical event itself evokes surprise in the listener, which is a 

manifestation of prediction error and may be quantified in terms of information 

content. This, in turn, triggers a process of learning, entailing optimisation of the 

listener’s internal model, with the aim of minimising the relative entropy between 

model predictions and future sensory input. 
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Figure 9. The Predictive Coding of Musical Expertise Theory. This theory posits that musical 

expertise is acquired through a process where every musical event is associated with a cycle 

comprising surprise, learning, and uncertainty phases. In the context of predictive coding theory, 

this corresponds to prediction error causing optimisation of the listener’s internal generative 

model giving rise to new predictions. The predictive processing involved in these phases can be 

quantified in terms of information content, relative entropy minimisation, and absolute entropy. 
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2.11.1. Study 1: Predictive uncertainty 

Study 1 aimed to test absolute entropy as a model of predictive uncertainty in 

melodic pitch expectation. Musicians and non-musicians listened to melodic contexts 

selected by IDyOM to afford expectations with either high or low levels of absolute 

entropy. Ratings of explicit uncertainty and unexpectedness for different 

continuations were collected. Four hypotheses were tested. First, absolute entropy 

was expected to model predictive uncertainty, resulting in main effects of entropy on 

explicit and inferred uncertainty. Second, musicians would predict with lower 

degrees of uncertainty than non-musicians, resulting in main effects of expertise on 

inferred and explicit uncertainty. Third, expertise would be selectively advantageous 

in low-entropy contexts where musicians would more correctly identify low-

probability continuations as such, thus experiencing larger prediction error on 

average than non-musicians. This would result in an entropy-by-expertise interaction 

on unexpectedness ratings. Fourth, information content was hypothesised to model 

unexpectedness and this relationship would increase with expertise. 

  

2.11.2. Study 2: Stylistic specialisation 

Study 2 aimed to contrast the effects of stylistically specialised expertise with those of 

general musical expertise. Following a procedure similar to that for Study 1, non-

musicians and professional musicians specialising in either jazz or classical music 

rated unexpectedness and explicit uncertainty for improvised bebop solos by Charlie 

Parker. The stimuli were selected by IDyOM to either afford high-entropy 

expectations in the context of bebop jazz and simultaneously low-entropy 

expectations in the context of general tonal music or, alternatively, afford low bebop 

entropy and high general entropy. Effects of generalised musical expertise would 

emerge from classical vs. non-musician comparisons whereas those of specialised 

expertise would emerge from comparisons of jazz vs. classical musicians. Differences 



79 

between explicit and inferred measures would, furthermore, provide support for 

either implication or explication theories of musical skill acquisition. 

 

2.11.3. Study 3: Entropy minimisation 

Study 3 aimed to test relative entropy as a cognitively justified model of uncertainty 

reduction in statistical learning of musical tone sequences. To this end, data from 

previous statistical learning experiments (Loui & Wessel, 2008; Loui et al., 2010) (i.e. 

Experiments A1-A3) as well as data from Study 1 (i.e. Experiment B) were subjected 

to re-analysis. Relative entropy minimisation was hypothesised to take place on the 

short and long timescales, and more so in low-entropy contexts. This presumably 

universal learning mechanism was, however, not expected to depend on musical 

expertise or on differences in the size of the exposure corpus. 

 

2.11.4. Study 4: Feature processing 

Study 4 aimed to test whether musical expertise influences neural mechanisms for 

auditory feature processing, and if so, to determine whether such changes follow the 

dependent or independent processing hypotheses. This was done by assessing the 

additivity of the MMNm response to single, double, and triple deviants in pitch, 

perceived location, and intensity presented in classical oddball and musical multi-

feature paradigms.  
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3. Methods 

In this section, a brief overview will be provided of the methods applied in Studies 1-

4. Complete methodological descriptions are found in the manuscripts (see 

Appendices). 

 

Table 2. Descriptive statistics for participants in Studies 1-4. 

Study Group n Gender Age 
Mean (SD) 

Musical expertise 
Measure Value 

Mean (SD) 
1 Musicians 17 9F, 8M  26.7 (5.7) G 53.1 (7.8) 
 Non-musicians 17 8F, 9M 28.9 (6.4) G 13.9 (3.6) 
2 Jazz musicians 22 4F, 18M 35.4 (12.1) H,!I! 42.5 (4.7), 213 

(18) 
 Classical musicians 20 14F, 6M 29.4 (8.7) H,!I! 44.0 (2.2), 130 

(15) 
 Non-musicians 20 8F, 12M 32.0 (10.0) H,!I! 10.6 (3.2), 99 

(14) 
3 (A1) Musically trained 20 17F, 3M 19.4 (1.3) J 9.2 (2.2) 
3 (A2) Musically trained 24 12F, 12M 19.5 (1.3) J 9.5 (3.1) 
3 (A3) Musically trained 24 13F, 11M 19.5 (1.3) J 9.6 (2.6) 
 Musically untrained 24 13F, 11M 19.8 (1.2) J 0.1 (0.2) 
3 (B) Musicians 17 9F, 8M  26.7 (5.7) G 53.1 (7.8) 
 Non-musicians 17 8F, 9M 28.9 (6.4) G 13.9 (3.6) 
4 Musicians 25 10F, 15M 25.0 (3.9) H 42.4 (3.1) 
 Non-musicians 25 11F, 14M 24.7 (2.9) H 10.9 (7.3) 
Self-report measures of musical expertise:  
G Gold-MSI, v0.9, “musical training” subscale. H Gold-MSI, v1.0, “musical training” subscale.  
I Composite jazz experience. J Years of musical training.  
 

 

3.1. Study 1: Predictive uncertainty 

3.1.1. Participants 

Musicians and non-musicians were recruited, primarily from the graduate student 

population at Goldsmiths College, University of London (Table 2). Participants’ self-

declared group membership was confirmed by scores on the musical training 

subscale from Goldsmiths Musical Sophistication Index (Gold-MSI) v0.9 that were 

either below the 33rd or above the 67th percentile of scores from a sample of 488 

individuals representative of the general British population (Müllensiefen, Gingras, 

Stewart, & Musil, 2011). Groups were matched on age and gender. 
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3.1.2. Materials 

A total of 24 monophonic melodic contexts were selected for four experimental 

conditions (i.e. six contexts in each condition) containing simple or complex stimuli 

affording continuations with high or low entropy. Simple stimuli originated from a 

corpus of 120 English hymns isochronised by a skilled musicologist (Nicholson, 

Knight, & Dykes Bower, 1950) whereas complex stimuli originated from 35 “Selected 

Songs” by Franz Schubert (Max Friedländer/C.F. Peters, Frankfurt). 

Stimulus selection followed the procedure outlined in Figure 10 with two 

separate runs of IDyOM (Section 2.7) using the configurations specified in Table 3. 

Specifically, chromatic pitch was predicted using source viewpoints linking pitch 

interval and scale degree for simple stimuli and pitch interval, scale degree, and the 

Parsons code for inter-onset-intervals for complex stimuli. Both sub-models were 

used with the long-term sub-model trained on chorale melodies and German and 

Canadian folksongs (Creighton, 1966; Fink, 1893; Riemenschneider, 1941).  

The first model runs identified 72 candidate contexts, corresponding to the 

notes with the highest and lowest absolute entropy values from the simple and 

complex corpora preceded by their original context. The segmented candidate 

contexts always started with a phrase beginning and contained minimum eight notes 

and four distinct pitches. The second model runs modelled these candidates when 

listened to in isolation, using updated key signatures from Temperley’s (1999) 

version of the Krumhansl-Schmuckler algorithm (Krumhansl, 1990, pp. 77-110). The 

final stimulus contexts were selected based on the absolute entropy of normalised 

probability distributions for nine chromatically distributed probe tones surrounding 

(and including) the median pitch of each context. 
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Figure 10. Stimulus selection for Study 1. Twenty-four stimulus contexts with high or low entropy 

were selected from hymns (simple) and Schubert songs (complex) using two runs of IDyOM. 

 

 

Table 3. IDyOM configurations for Study 1. 

 Target 
dataset 

Target 
viewpoint 

Source 
viewpoint 

Order 
bound 

Sub-
model(s) 

Training 
dataset(s) 

Resampling 
folds 

1st Hymns cpitch cpintKcpintfref none BOTH Folksongs & 
Bach 
chorales 

N/A 

1st Schubert cpitch cpintKcpintfref
Kbioi-contour 

none BOTH Folksongs & 
Bach 
chorales 

N/A 

2nd 36 hymn 
candidates 

cpitch cpintKcpintfref none BOTH Folksongs & 
Bach 
chorales 

N/A 

2nd 36 Schubert 
candidates 

cpitch cpintKcpintfref
Kbioi-contour 

none BOTH Folksongs & 
Bach 
chorales 

N/A 

Viewpoints: cpitch: chromatic pitch; cpint: chromatic pitch interval; cpintfref: chromatic scale degree; 
bioi-contour: Parsons code (i.e. up, down, or repeat) for inter-onset intervals. 
 

 

3.1.3. Procedure 

The experimental procedure followed the Predictive Uncertainty Paradigm (Section 

2.8, Figure 6). First, explicit uncertainty ratings (1-9) and dichotomous familiarity 

judgements (yes/no) were collected for the incomplete melodic contexts presented 

with a piano timbre. Next, expectedness ratings (1-9) were collected for the nine 

probe tones for each context. Stimulus presentation was randomised and lasted 60-

90 mins in total. Data from familiar contexts were excluded from further analysis. 
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3.2. Study 2: Stylistic specialisation 

3.2.1. Participants 

Jazz musicians, classical musicians, and non-musicians resident in the Greater London 

area, UK, were recruited for this study (Table 2). Whereas non-musicians had never 

received regular one-on-one music tuition and not performed music in public after 

the age of 12, musicians were professionally active, either earning the majority of 

their income from teaching and/or performing music or being full-time performance 

degree students. The three groups were matched on age, but not on gender. Jazz and 

classical musicians were matched on self-report measures of musical sophistication, 

but jazz musicians outperformed classical musicians on listening tests relating to 

genre sorting and melodic memory (Müllensiefen et al., 2014).  

 

3.2.2. Materials 

A total of 20 monophonic melodic contexts were selected for the two conditions 

referred to as “high bebop entropy” and “low bebop entropy”. All stimuli originated 

from a subset of transcribed solos from Charlie Parker’s Omnibook (Parker, 1978) 

deemed as “unfamiliar to the average jazz musician” by two independent jazz experts. 

Stimulus selection took place over two model runs and was based on the 

difference between absolute entropy estimates from two implementations of IDyOM 

referred to as the “bebop” model and the “general” model (Figure 11; see Table 4 for 

configurations). Both models predicted pitch from pitch interval linked with scale 

degree. However, whereas the “general” model was trained on folksongs and hymns 

(Böhme, 1897; Creighton, 1966; Nicholson et al., 1950), http://www.dva.uni-

freiburg.de/sammlungen/Deutsches_Volksliedarchiv), the “bebop” model used 10-

fold cross-validation to predict from the Omnibook dataset itself in the first model 

run and was trained on the Omnibook dataset excluding candidate contexts in the 

second model run. The 72 candidate contexts (all in a major key) were segmented to 
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begin with phrase beginnings, contain at least 12 events and six pitches with no 

overlaps with the song theme or with other candidate contexts. Final selection relied 

on normalised probability distributions for nine chromatically distributed probe 

tones surrounding and including the pre-probe tone pitch. 

 

 

Figure 11. Stimulus selection for Study 2. Twenty stimulus contexts with high or low bebop 

entropy (and simultaneously low and high general entropy, respectively) were selected from 

Charlie Parker’s Omnibook of transcribed saxophone solos, using two runs of IDyOM. 

 

Table 4. IDyOM configurations for Study 2. 

 Target 
dataset 

Target 
viewpoint 

Source 
viewpoint 

Order 
bound 

Sub-
model(s) 

Training 
dataset(s) 

Resampling 
folds 

1st (B) Omnibook cpitch cpintK!

cpintfref 
none BOTH Omnibook 10 

1st (G) Omnibook cpitch cpintK!

cpintfref 
none BOTH Folksongs & 

hymns 
N/A 

2nd (B) 72 
Omnibook 
candidates 

cpitch cpintK!

cpintfref 
none BOTH Omnibook  

(-candidates) 
N/A 

2nd (G) 72 
Omnibook 
candidates 

cpitch cpintK!

cpintfref 
none BOTH Folksongs & 

hymns 
N/A 

Models: B: Bebop; G: General. Viewpoints: cpitch: chromatic pitch; cpint: chromatic pitch interval; 
cpintfref: chromatic scale degree. 
 

 

3.2.3. Procedure 

The experimental procedure followed the Predictive Uncertainty Paradigm (Section 

2.8, Figure 6). First, ratings of explicit uncertainty (1-9) and liking (1-5, not analysed 
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here) were collected for the incomplete melodic contexts. Next, expectedness ratings 

(1-9) were collected for nine chromatically distributed probe tones surrounding the 

final pitch of the context. Stimuli were presented using an alto saxophone timbre at 

half the original tempo with an added swing feel based on preferred durational ratios 

(Friberg & Sundström, 1997). All contexts were preceded by a piano cadence (ii7-V7-

I∆) to enforce underlying meter (always 4/4), metrical position, key (always major), 

and harmonic style (seventh chords typical for jazz). Presentation order was 

randomised, and sessions typically lasted 90 mins in total.  

To assess influences of specialised and generalised expertise, model-fit values 

were computed in terms of Pearson correlations between IDyOM model estimates 

(i.e. absolute entropy or information content) and empirical data (i.e. 

explicit/inferred uncertainty or expectedness), separately for the bebop and general 

models. 

 

3.3. Study 3: Entropy minimisation 

3.3.1. Experiment A: Participants 

Musically trained and untrained undergraduate students were recruited at the 

University of California at Berkeley, USA. Musical training received was less than one 

year for untrained participants and between 5 and 16 years for trained participants. 

 

3.3.2. Experiment A: Materials and procedure 

Experiment A comprised three sub-experiments (A1-A3), each of which contained an 

exposure phase (cf. Section 2.5) preceded as well as succeeded by a probe-tone task. 

Exposure phases lasted 25-30 mins during which participants listened to pure-tone 

sequences with note durations of 500 ms played at 70dB over headphones while 

drawing on paper to pass time. Each sequence consisted of randomised and 

concatenated 8-tone melodies separated by 500 ms of silence. Participants heard 
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either 5 melodies played 100 times (A1), 15 melodies played 27 times (A2), or 400 

melodies played once (A3). A subset of six pitches from the artificially constructed 

Bohlen-Pierce (BP) scale was used. This scale divides the tritave, corresponding to an 

octave and a fifth, into 13 logarithmically even subdivisions, thus mirroring the 

construction of the 12-tet equal-tempered scale, but evading the culturally embedded 

listening schemata that this familiar scale evokes in a typical Western listener 

(Mathews, Pierce, Reeves, & Roberts, 1988). In each sub-experiment (A1-A3), two 

distinct finite-state grammars were used to generate exposure sequences with 

comparable zeroth-order probabilities, but dissimilar first-order transition 

probabilities. Before and after exposure, probe-tone ratings for all 13 notes of the BP 

scale were given on a scale ranging from 1 (“poor”) to 7 (“well”). 

 

3.3.3. Experiment B: Participants, materials, and procedure 

Participants, materials, and procedure for Experiment B were identical to those 

reported for Study 1 (Section 3.1.1-3). Relative entropy values between normalised 

distributions of expectedness ratings and normalised probability distributions 

estimated by IDyOM were computed (as specified in Section 2.6, Equation 5). These 

data were subjected to 2x2x2 ANOVA with style (hymn vs. Schubert), entropy (high 

vs. low), and expertise (musicians vs. non-musicians) as factors. 

 

3.4. Study 4: Feature processing 

3.4.1. Participants 

Twenty-five non-musicians and 25 musicians, matched on age and gender, were 

recruited for this study (Table 2). Musicians were full-time conservatory students or 

professional musicians receiving their main income from performing and/or teaching 

music. Non-musicians did not regularly play a musical instrument and had received 

less than one year of music tuition beyond mandatory school lessons. 
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3.4.2. Materials 

Standard and deviant tones for the experiment were generated from sampled piano 

sounds with 200 ms duration including 5 ms rise time and 10 ms fall time. Seven 

types of deviants resulted from modification in Adobe Audition v3.0 (Adobe Systems 

Inc.) of the notes from the pitch range A#2-A3. Specifically, pitch deviants (P) were 

shifted down 35 cents, intensity deviants (I) were decreased by 12 dB, and location 

deviants (L) were produced by delaying the right track by 200 µs compared to the left 

one. Double and triple deviants combined these modifications in this particular order 

(i.e. PI, IL, LP, and PIL). 

 

3.4.3. Procedure 

The experiment lasted ~100 mins in total and comprised seven blocks (M1-C1-M2-

C2-M3-C4-M4), each of 11-14 mins duration (Figure 12). M blocks used Vuust et al.’s 

(2011) musical multi-feature paradigm with a constant SOA of 205 ms (Section 2.9, 

Figure 8); however, the standard pattern occurred three times between each deviant 

to accommodate the lack of independence between double and triple deviants and 

their constituent single deviants (Näätänen et al., 2004). As a control, O blocks used 

an oddball paradigm with a SOA of 400 ms and 3-5 standards between each deviant. 

For both paradigms, pitch level changed within the range A#2-A3 for each 

presentation of the seven deviants; deviant types and pitch levels were permuted 

(Figure 12). Three iterations of this procedure constituted an M block whereas four 

iterations constituted a C block, resulting in 144 samples of each deviant type for each 

paradigm.  

Participants were instructed to stay still throughout blocks while watching a 

silent movie with the soundtrack disabled. During the 1-2 mins breaks between 

blocks, participants remained seated inside the magnetically shielded room, but were 

allowed to stretch, move, and talk with the experimenter. Sounds were presented 
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binaurally at 50 dB above individual hearing threshold through Etymotic ER•2 

earphones using the Presentation software (Neurobehavioral Systems, San Francisco, 

USA). 

 

 

 

 

Figure 12. Experimental paradigm for Study 4. Alternating musical multi-feature (M1-M4) and 

control blocks (O1-O3) were presented. Each block comprised three of four iterations of full 

permutations over pitch levels A#2-A3, which, in turn, contained all seven deviant types. 
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3.4.4. MEG acquisition and analysis 

MEG data were sampled at 1000 Hz using the 102 magnetometers and 204 planar 

gradiometers of the Elekta Neuromag TRIUX system. Concurrently, four continuous 

Head Position Indicators (cHPI) and surface electrodes monitored horizontal and 

vertical EOG, ECG, and movements. Pre-processing used Elekta’s MaxFilter software 

(Version 2.2.15), configured to temporal signal source separation (tSSS) (Taulu, 

Kajola, & Simola, 2004; Taulu & Simola, 2006) and down-sampling to 250 Hz. EOG 

and ECG artefacts were removed with independent components analysis (ICA), as 

implemented in MNE Python (Gramfort et al., 2013, 2014) and as validated by visual 

inspection. Using Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2010), 

http://www.ru.nl/neuroimaging/fieldtrip), data coinciding with “S” and “D1-D7” in 

Figure 12 were epoched with 100 ms pre-stimulus and 400 ms post-stimulus 

intervals and band-pass filtered at 1-40 Hz (using data padding). Planar gradiometers 

were combined, and baseline correction performed based on the 50 ms pre-stimulus 

interval.  

Non-parametric, cluster-based permutation tests (Maris & Oostenveld, 2007), 

using maximum value of the summed t values as cluster-level statistic and 10,000 

random permutations of the group or condition labels, were run on data from the 

nine combined gradiometers surrounding and including the sensor with the highest 

MMNm signal in each hemisphere (i.e. 18 sensors in total) recorded within the 100-

300 ms post-stimulus time range. First, MMNm effects were established by 

comparing standard and deviant responses. Next, potential additivity was established 

by comparing MMNms for triple and double deviants with those for their constituent 

single or double deviants. Finally, as recommended for testing interaction effects 

within the permutation framework5, expertise effects on under-additivity were 

assessed by comparing the difference between empirical double and triple MMNms 

                                                           
5
 http://www.fieldtriptoolbox.org/faq/how_can_i_test_an_interaction_effect_using_cluster-

based_permutation_tests.  
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and modelled MMNms corresponding to the sum of relevant empirical single MMNms 

across musicians and non-musicians. Bonferroni correction was applied to this main 

analysis. 
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4. Results 

4.1. Study 1: Predictive uncertainty 

4.1.1. Explicit uncertainty 

For explicit uncertainty, different patterns of the hypothesised effects were found for 

simple (i.e. hymns) and complex (i.e. Schubert) stimuli (Figure 13A). Specifically, for 

simple stimuli, explicit uncertainty was lower in low-entropy contexts compared to 

high-entropy contexts, and musicians generally experienced lower uncertainty than 

non-musicians. No such entropy or expertise effects were present for the complex 

stimuli. When averaged across participants within groups, explicit uncertainty did not 

generally correlate with absolute entropy, and the extent of this fit for individual 

participants did also not correlate with measures of musical experience. 

 

4.1.2. Inferred uncertainty 

For inferred uncertainty, as hypothesised, the analysis of data from simple stimuli 

showed lower uncertainty in low-entropy contexts and lower uncertainty for 

musicians compared to non-musicians (Figure 13B). For complex stimuli, however, 

entropy effects were only present in musicians, and the expertise effects were more 

prominent for low-entropy contexts. Additionally, when averaged across participants, 

inferred uncertainty increased with absolute entropy (Figure 13C), but individual 

model-fit did not correlate with musical experience. 

 

4.1.3. Relationship between explicit and inferred uncertainty 

When averaged across participants, explicit and inferred uncertainty measures were 

correlated. This relationship was slightly stronger in musicians than in non-

musicians. 
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4.1.4. Unexpectedness 

For mean unexpectedness ratings, entropy interacted with expertise, such that 

musicians experienced low-entropy contexts as more unexpected on average than did 

non-musicians (Figure 13D). In other words, expertise effects were less prominent 

when entropy was high. As hypothesised, average unexpectedness increased with 

information content (Figure 13E), and the strength of this relationship further 

increased with musical training (Figure 13F). 

 

4.1.5. Model comparisons 

Model comparison analysis revealed that absolute entropy was generally superior to 

Schmuckler’s difference scores (Section 2.8) in modelling predictive uncertainty from 

the IDyOM output (cf. appendix for Manuscript 1, Section 6.1). IC based on IDyOM 

also vastly outperformed Schellenberg’s (1997) implementation of the rule-based 

Implication-Realization Model (Narmour, 1990, 1992) as a model of unexpectedness. 

Moreover, in configuring IDyOM, simple first-order Markov models were sufficient to 

predict unexpectedness whereas longer contexts of three or more notes offered a 

slight advantage for modelling uncertainty. For these short excerpts, the short-term 

sub-model did not increase model performance. 
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Figure 13. Models of predictive uncertainty and unexpectedness. (A) Mean explicit uncertainty 

ratings; (B) Mean inferred uncertainty; (C) Inferred uncertainty increases with absolute entropy; 

(D) Mean unexpectedness ratings; (E) Unexpectedness increases with information content; (F) 

Unexpectedness-model-fit increases with musical training. 
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4.2. Study 2: Stylistic specialisation 

4.2.1. Model-fit 

For expectedness, bebop model-fit was higher in musicians than in non-musicians 

with no significant differences between specialists in jazz and classical music (Figure 

14A). For inferred uncertainty, only marginally non-significant differences were 

found between classical and non-musicians, but jazz musicians did obtain 

significantly higher bebop model-fit than non-musicians. For explicit uncertainty, jazz 

musicians achieved higher bebop model-fit than both classical and non-musicians. 

Participants without jazz-specific expertise did, however, not differ from one another.  

These findings were confirmed in terms of correlations between measures of 

general and jazz-specific experience and bebop model-fit. Specifically, both types of 

experience explained unique proportions of variance in model-fit for expectedness 

whereas general experience was sufficient to explain that for inferred uncertainty; for 

explicit uncertainty, on the other hand, only jazz-specific experience explained bebop 

model-fit. There were no expertise differences in fit with the stylistically irrelevant 

model trained on general tonal music.6  

 

4.2.2. Mean expectedness and uncertainty 

Condition effects, indicative of following the bebop model, were only found in jazz 

and classical musicians for mean expectedness and mean inferred uncertainty (Figure 

14B). For mean explicit uncertainty, these effects only appeared for jazz experts. 

Expertise-related decreases in expectedness and uncertainty were, furthermore, only 

present for low-entropy contexts. 

 

 

                                                           
6
 Note that weak general model-fit for expectedness is due to covariance between IDyOM estimates 

of probability from the bebop and general models, which were not contrasted by design; similarly, 
reverse general model-fit for uncertainty is due to the way that stimuli were selected (i.e. based on 
difference scores). 
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4.2.3. Relationship between explicit and inferred uncertainty 

Consistent with the just established importance of specialised expertise in explicit 

uncertainty processing (Section 4.2.1), the relationship between explicit and inferred 

measures of uncertainty only reached significance for jazz musicians (Figure 14C). 
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Figure 14. Results from Study 2. (A) Model-fit7; (B) Means of expectedness and uncertainty; (C) 

Relationship between inferred and explicit uncertainty. * p < .050, ** p < .010, *** p <. .001. 

 

                                                           
7
 Note that negative values designate good model-fit for expectedness. 
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4.3. Study 3: Entropy minimisation 

4.3.1. Experiment A: Short-term learning 

Entropy minimisation took place in all experimental conditions, as evident from 

lower relative entropy after exposure compared to before (Figure 15A). As 

hypothesised, this effect did not interact significantly with expertise or with the 

number of exposure melodies. Additional comparative analyses using alternative 

correlational and information-theoretic measures confirmed the superiority of 

relative entropy as a model of uncertainty reduction (further details in the appendix 

for Manuscript 3, Section 6.3).  

 

4.3.2. Experiment B: Long-term learning 

Entropy minimisation was found in terms of expertise effects in all four conditions 

(Figure 15B). As hypothesised, this effect was, furthermore, stronger for low- than for 

high-entropy contexts, regardless of musical style. Again, relative entropy generally 

picked up these effects better than alternative measures (cf. appendix for Manuscript 

3, Section 6.3). 

 



98 

 

Figure 15. Entropy minimisation in short-term and long-term experiments. (A) The relative 

entropy between probe-tone ratings and exposure frequencies decreases after exposure. (B) 

The relative entropy between probe-tone ratings and probability estimates of IDyOM is smaller 

in musicians compared to non-musicians; this expertise effect is greater for low-entropy contexts 

than in high-entropy contexts. * p < .050, ** p < .010, *** p <. .001. 
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4.4. Study 4: Feature processing 

Significant MMNm effects were present for all deviant types in both paradigms. In the 

musical multi-feature paradigm, MMNms for double and triple deviants were 

generally larger than those for constituent single or double deviants. The only 

exception was that adding pitch deviance to a single deviant only resulted in non-

significant (LP vs. L) or weakly significant (PI vs. I) MMNm increases. The main 

analysis confirmed that this suggested under-additivity for pitch in the musical 

paradigm was absent in non-musicians, but present in musicians, as evident from 

significant interaction effects for PI and LP, but not for IL (Figure 16). For PIL, non-

musicians showed an under-additivity which was not significantly smaller than that 

for musicians when Bonferroni-correction was applied. In the control paradigm, on 

other hand, double and triple deviants were always significantly larger than 

constituent single or double deviants, and the extent of additivity did not differ 

between musicians and non-musicians (Figure 17).  
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Study 4: Musical multi-feature paradigm 

 Musicians Non-musicians 

PI 

IL 

LP 

PIL 

#p < .00625, ##p < .00125, ###p < .00025 (corrected alpha) 
* p < .0250; ** p < .0050; ***p < .0005 (uncorected alpha) 

 
 

Figure 16. MMNm additivity in the musical multi-feature paradigm. Empirical and modelled 

MMNms to double and triple deviants differing in pitch (P), intensity (I), and/or location (L). 

Greater under-additivity was present in musicians compared to non-musicians for PI and LP. 

Data from 18 combined gradiometers, low-pass filtered at 20 Hz for visualisation purposes. 

Topographies depict MMNm effect in the 100-300 ms post-stimulus time range. 
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Study 4: Control paradigm 

 Musicians Non-musicians 

PI 

 

IL 

LP 

PIL 

* p < .0250; ** p < .0050; ***p < .0005 (uncorrected alpha) 

 

 

Figure 17. MMNm additivity in the control paradigm. Empirical and modelled MMNms to double 

and triple deviants (cf. Figure 16 for details). No significant differences in MMNm additivity was 

found between musicians and non-musicians.  
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5. Discussion 

5.1. Main findings 

The work presented here set out to investigate two overall research questions 

regarding, first, to what extent musical expertise as a phenomenon is consistent with 

the Predictive Coding of Musical Expertise Theory (Section 2.11), and, second, 

whether and how neural mechanisms for auditory feature processing are subject to 

expertise-induced plasticity. Four experiments were designed and carried out 

(Chapters 3-4). Whereas detailed discussions of each of these studies may be found in 

the appendices (Sections 6.1-4), the focus here will be on how the findings as a whole 

inform the previously presented analytical framework (Section 2.10) and, ultimately, 

how they reflect back on the scientific expertise concept that was introduced at the 

outset of this dissertation (Sections 2.2-3). First, however, the main results will be 

summarised along with bracketed cross-referencing pointers to the subsequent 

discussion. 

 

5.1.1. Entropy as a model of predictive uncertainty 

The first study demonstrated how predictive uncertainty can be characterised in 

terms of the absolute entropy of conditional probability distributions acquired 

through long-term exposure to music. This emphasises the key importance of 

statistical learning and uncertainty processing in expertise acquisition, which will be 

further discussed below (cf. Sections 5.2.2 and 5.2.5). Specifically, both when 

operationalised as explicit ratings of perceived uncertainty and as the actual 

uncertainty with which predictions were made about melodic continuation, 

predictive uncertainty was generally lower for melodic excerpts that IDyOM had 

estimated to be low in entropy in the context of Western tonal music. While this 

sensitivity to probabilistic structure could be detected with explicit and inferred 

measures in musicians and non-musicians alike using the structurally simple hymn 
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stimuli, it was absent from the explicit ratings when using the tonally and 

rhythmically more complex melodies by Schubert. This inability to introspect about 

the uncertainty of melodic continuation was particularly noteworthy in the case of 

musicians whose experience of surprise to different continuations clearly reflected 

that they possessed knowledge of the underlying probability distributions. These 

results reveal an intriguing dissociation between predictive processing of surprise 

and uncertainty (cf. Section 5.2.4), including differences in the conscious access to 

such processing (cf. Section 5.2.6). 

Next, it was established that the extent of correlational fit between melodic 

expectations and probabilistic structure in music was a linearly increasing function of 

expertise. This led to lower perceived uncertainty and to more specific expectations 

in musicians compared to non-musicians. Expertise was also associated with higher 

mean unexpectedness specifically for continuations of low-entropy contexts. We later 

interpret this as indicative of greater prediction error due to more specific 

expectations, particularly when probabilistic decodability is afforded by the stimuli 

(cf. Section 5.2.4). Higher precision-weighting of prediction error may further 

magnify this effect by means of synaptic gain control, as suggested by predictive 

coding theory (Friston, 2010). 

Despite the significant advances of this first study, it remained unknown 

whether the identified expertise effects could be ascribed to internalisation of 

probabilistic musical material or merely to advantages associated with musical 

expertise in more general terms. For instance, musical training may enhance pitch 

processing (Besson et al., 2007; Schön, Magne, & Besson, 2004), attentional focus 

(Strait & Kraus, 2011), sensitivity to local statistics (Francois & Schön, 2011), 

motivation (McAuley, Henry, & Tuft, 2011), or indeed the ability to comply with task 

demands (Bigand & Poulin-Charronnat, 2006). Contrasting experts specialising in 

distinct musical styles provided a means of addressing this potential criticism. 
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5.1.2. Specialised stylistic expertise 

The second study found distinct effects of generalised and specialised musical 

expertise on predictive processing of melodic improvisations by Charlie Parker. The 

former were assessed by comparing classical vs. non-musicians whereas the latter 

were assessed by comparing jazz vs. classical musicians. Using a paradigm similar to 

that for Study 1, generalised expertise effects emerged in terms of correlational 

model-fit for expectedness and inferred uncertainty measures as well as condition 

effects on the means of these two measures. As for Study 1, condition effects in the 

case of inferred uncertainty reflect that participants made predictions that were 

consistent with the model whereas, in the case of expectedness, they reflect greater 

prediction error on average in response to low-entropy contexts (cf. Section 5.2.4).  

Effects of specialised musical expertise, conversely, emerged as model-fit for 

explicit uncertainty and model-consistent effects of experimental condition on the 

means of this measure. Furthermore, a significant relationship between explicit and 

inferred uncertainty was only observed for expert jazz musicians. This last finding 

may seem inconsistent with Study 1 where the explicit-to-inferred relationship was 

found in both musicians and non-musicians, albeit more prominently so in the former 

group. However, Study 2, in fact, refines this picture by demonstrating that stylistic 

familiarity is required for this relationship to emerge and, moreover, that explication 

of implicitly acquired knowledge may play a role in receptive aspects of musical 

expertise (cf. Section 5.2.6). 

Lastly, beyond expected artefacts, no notable extent of correlational model-fit 

with the general model was found. General model-fit was not affected by expertise 

either. Thus, although Study 1 indicated that musicians and non-musicians possess a 

generative model for melodic continuation in general tonal music, they refrained 

from misapplying this knowledge in the stylistically irrelevant contexts introduced in 
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Study 2. This finding will be discussed in the context of cognitive firewalls (cf. Section 

5.2.5). 

Important to mention, the findings of Study 2 suffer from the possible limitation 

that, despite considerable efforts during recruitment, jazz experience was slightly 

higher in classical musicians than in non-musicians. Although this may mildly 

complicate the interpretation of generalised expertise effects, it does not compromise 

the key finding that specialised expertise expresses itself in terms of knowledge 

explication (cf. Section 5.2.6). Superior melodic memory and genre recognition skills 

in jazz compared to classical musicians represent another potential limitation. This 

may, however, be ascribed to the higher perceived importance of listening skills 

amongst jazz musicians (Wopereis, 2013), thus representing a characteristic of the 

population rather than of the sample. Yet, a truly counterbalanced design, also 

exposing jazz musicians to an unfamiliar, classical sub-genre, would admittedly have 

been preferable in this regard.  

A final limitation shared by Studies 1-2 is the use of correlational measures of 

model-fit. As pointed out in Section 2.8, information-theoretic measures are 

altogether more plausible models of human cognition. Whereas absolute entropy as a 

cognitive model ignores the fact that statistical learning is constrained by context 

entropy, as established in Studies 1-2, relative entropy has greater potential as a 

cognitive model of learning. 

 

5.1.3. Statistical learning as entropy minimisation 

The third study established that relative entropy minimisation successfully models 

statistical learning taking place on short and long timescales. Although Studies 1-2 

already contributed substantially by showing expertise effects on absolute entropy, 

the superiority of relative entropy as a model of cognitive learning processes, both in 
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comparison to correlational and alternative information-theoretic measures was 

confirmed by model comparisons carried out in Study 3 (cf. Section 5.2.4).  

For practical reasons, relative entropy for the short-term experiments (Study 

3A) was computed from zeroth-order statistics. Because the Predictive Coding of 

Musical Expertise Theory posits that uncertainty is context-dependent (Section 2.11), 

this practice seems suboptimal. Thus, in planned and ongoing work, IDyOM is trained 

on the BP exposure corpora from Loui et al. (2010) to estimate variable-order 

conditional probability distributions, similarly to what was done for the long-term 

experiments (Study 3B). 

Whereas relative entropy minimisation was stronger for low-entropy contexts, 

it neither interacted with musical expertise nor with the size of the exposure corpus. 

The lack of expertise advantages regarding statistical learning efficacy is consistent 

with predictive coding theory, thus making statistical learning a candidate for a 

general mechanism of human cognition and learning (cf. Section 5.2.1-2), potentially 

offering a perspective for reconciling theories from cognitive psychology with those 

from cognitive neuroscience (cf. Section 5.2.7). These results were only possible by 

meticulously controlling prior familiarity with the use of an artificially constructed 

musical scale (i.e. the BP scale). This procedure offers promising perspectives for the 

study of cognitive constraints for representations of musical structure (cf. Sections 

5.2.2-3). In modelling melodic expectations with IDyOM, Studies 1-3 presumed that 

scale degree and pitch intervals constitute key factors in this regard. Although this 

assumption is indeed strongly supported by empirical research (e.g., Deutsch & 

Feroe, 1981; Dowling & Bartlett, 1981), neurophysiological methods offer a path 

towards a yet more refined understanding of cognitive representation. 
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5.1.4. Feature processing in musicians 

Using magnetoencephalography (MEG), the fourth and final study found greater 

under-additivity of the MMNm response in musicians compared to non-musicians 

specifically for the pitch component when sounds were presented in a musical 

context. This evidence in support of the dependent processing hypothesis indicates 

that neural mechanisms for auditory feature processing are subject to expertise-

induced plasticity (cf. Section 5.2.2), expressed as more integrative processing in 

musical experts (cf. Section 5.2.3), already at a pre-attentive stage (cf. Section 5.2.6). 

The fact that such expertise effects were absent in the non-musical oddball control 

paradigm, furthermore, suggests that these processes are flexible and context-

dependent (cf. Section 5.2.5). Lastly, selective dependent processing for pitch 

advocates that this feature plays a privileged role in music perception which may be 

ascribed to its intrinsic significance in musical practice and syntax (cf. Section 5.2.3). 

 

5.2. Predictive coding of musical expertise 

The presented results will now be evaluated in relation to the Predictive Coding of 

Musical Expertise Theory (Section 2.11). Subsequently, it will be discussed what has 

been revealed in relation to each of the six analytical perspectives of the scientific 

expertise framework (Table 1).  

 

5.2.1. The Predictive Coding of Musical Expertise Theory 

The first three studies generally substantiate the Predictive Coding of Musical 

Expertise Theory (Figure 9). This is evident from the fact that the hypotheses 

regarding statistical learning processes that were derived directly from predictive 

coding theory (Section 2.5) were all supported by the empirical data. Summing up the 

support for this theory, it was first established that absolute entropy models 

prospective uncertainty before the occurrence of a musical event. However, the 
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listener’s access to this knowledge on a conscious level either emerges from 

accumulated implicit knowledge or, alternatively, depends on prior familiarity with 

the specific musical style in question. Additionally, IC models retrospective surprise 

or unexpectedness in response to musical events. For the first time, to our knowledge, 

it was further demonstrated that the strength of this relationship increases with 

musical experience. The prediction error giving rise to this surprise subsequently 

optimises the listener’s internal generative model for predicting future events. This 

learning process involves uncertainty reduction constrained by statistics of the 

context and can be modelled with relative entropy minimisation on longer timescales 

as well as for short-term experiments when comparing melodic pitch expectations 

before and after exposure. Importantly, when controlling for prior learning the 

learning mechanism itself was not subject to considerable expertise effects.  

The steps of uncertainty, surprise, and learning that were just outlined are 

thought to repeat for each new musical event. This cyclic nature of the Predictive 

Coding of Musical Expertise Theory is particularly interesting in the context of recent 

work on reward processing according to which pleasure arises from iterated phases 

of wanting, liking, and learning (Berridge & Kringelbach, 2015; Kringelbach, Stein, & 

van Hartevelt, 2012). The fact that this line of work already makes considerable 

references to predictive coding with implications for music perception (Gebauer, 

Kringelbach, & Vuust, 2012) suggests that the present work may also be favourably 

coupled with predictive coding-based accounts of reward behaviour and reward 

processing (e.g., Friston, Daunizeau, & Kiebel, 2009). 

Importantly, however, the present work only demonstrates what happens after 

multiple spins of the cycle. When it comes to modelling learning on an event-by-event 

basis, predictive coding theory offers a well-established Bayesian framework for 

doing so (Friston & Stephan, 2007; Pouget et al., 2013), and promising studies along 

these lines have already succeeded in modelling single-trial MMN responses to non-
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musical stimuli (Lieder, Daunizeau, et al., 2013; Lieder, Stephan, Daunizeau, Garrido, 

& Friston, 2013; Wacongne et al., 2012). Pursuing in this direction would be a natural 

next step for musical expertise research. 

 

5.2.2. Origin: 

The research presented here strongly supports that key aspects of receptive musical 

expertise arise from an exceptionally strong human capacity for statistical learning 

(Studies 1-3; Conway & Christiansen, 2006; Perruchet & Pacton, 2006; Romberg & 

Saffran, 2010; Saffran et al., 1999). The fact that listener expectations are based on 

general probabilistic properties of tonal music rather than on the statistics of the 

local context was further substantiated by IDyOM model comparisons (Study 1). In 

particular, fit to empirical data was much higher when using the LTM than when 

using the STM sub-model (at least for the short melodic contexts used here). 

This learning mechanism is largely automatic  (Kim, Seitz, Feenstra, & Shams, 

2009; Turk-Browne et al., 2005) and highly general. The latter is particularly evident 

from the present demonstration that it operates (and can be modelled with relative 

entropy minimisation) across different timescales and exposure corpora, including 

those using artificial and familiar pitch material, belonging to distinct musical styles, 

and of different levels of complexity (Studies 1-3).  

When controlling for long-term exposure, statistical learning was not notably 

enhanced by prior musical training. This is consistent with neurophysiological 

findings (Paraskevopoulos, Kuchenbuch, Herholz, & Pantev, 2012b) and aligns well 

with existing views highlighting the musical sophistication of non-musicians (Bigand 

& Poulin-Charronnat, 2006). However, others have found that musical training 

improves statistical learning (Schön & François, 2011; Shook, Marian, Bartolotti, & 

Schroeder, 2013). These seemingly contradictory findings can be resolved with 

reference to expertise advantages mediated by other factors. For instance, training 
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may optimise feature processing (Study 4) or increase attention, which could, in turn, 

enhance the processing of pitch (Jones, Johnston, & Puente, 2006) or indeed statistical 

learning itself (Toro et al., 2005). It has also been proposed that sounds provide an 

“auditory scaffold” facilitating processing of sequential structure in general (Conway, 

Pisoni, & Kronenberger, 2009). Statistical learning capacities may thus be innate (as 

suggested by PC), but experts excel in making optimal use of them. Unfamiliar scale 

systems offer a promising way in which future research can circumvent some, albeit 

not all, of the factors mediating expertise effects (cf. Loui et al., 2010; Study 3). 

Contributing to previous work using correlational measures (Eerola et al., 

2009; Krumhansl et al., 1999, 2000; Krumhansl, 1990; Loui et al., 2010; Study 1), 

empirical support was here obtained for an information-theoretic dissimilarity 

measure for modelling statistical learning (Study 3). Given its demonstrated 

relevance in wider aspects of cognitive (neuro-)science (Chater, Tenenbaum, & Yuille, 

2006; Knill & Pouget, 2004; Simoncelli & Olshausen, 2001; Theodorou & Todorov, 

2012), relative entropy arguably has greater bearing than correlational measures as a 

genuinely cognitive model of expertise (cf. Section 2.6). Information-theoretic models 

may thus still have a somewhat underused potential to inform music cognition with 

reference to wider currents in cognitive science (Abdallah, Ekeus, Foster, Robertson, 

& Plumbley, 2012; Abdallah & Plumbley, 2009). 

Although some influential work in the visual modality has traditionally 

considered sensory feature processing mechanisms to be innate or acquired through 

normal neurodevelopment (e.g., Quinlan, 2003; Treisman & Gelade, 1980), the 

present work pertaining to auditory feature processing showed considerable 

training-induced plasticity (Study 4). This finding expands upon a currently growing 

line of research revealing training-induced effects on multimodal integration of 

audiovisual and audiomotor stimuli (Bishop & Goebl, 2014; Pantev, Paraskevopoulos, 

Kuchenbuch, Lu, & Herholz, 2015; Paraskevopoulos & Herholz, 2013; 
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Paraskevopoulos, Kuchenbuch, Herholz, & Pantev, 2012a, 2014; Proverbio, Attardo, 

Cozzi, & Zani, 2015; Proverbio et al., 2014). The present findings establish that 

expertise also influences unisensory feature processing in the auditory modality. 

The emphasis on acquisition promoted here when accounting for the origins of 

musical expertise renders efforts to develop efficient teaching and practicing 

methodologies very essential. This, in turn, requires a refined understanding of the 

cognitive constraints for representing music.  

 

5.2.3. Cognitive representations 

The neurophysiological work presented here supports general expertise research 

demonstrating cognitive representations with greater complexity, efficiency, and 

domain-specific relevance in experts (Study 4; cf. Section 2.10.2). Specifically, musical 

expertise increased the extent of processing overlap for auditory features. If this 

indicates more sophisticated, holistic representations, it may explain expertise-

related enhancements in verbal and visual memory (Chan, Ho, & Cheung, 1998; 

Jakobson, Lewycky, & Kilgour, 2008), as suggested by feature-based theories of visual 

short-term memory (Curby, Glazek, & Gauthier, 2009). More dependent feature 

processing in musicians is similarly consistent with decreased neural activity 

associated with perceptual learning in audition (Berkowitz & Ansari, 2010; Jäncke et 

al., 2001; Zatorre et al., 2012) and vision (Kourtzi, Betts, Sarkheil, & Welchman, 2005; 

Schiltz et al., 1999; van Turennout, Ellmore, & Martin, 2000; Yotsumoto, Watanabe, & 

Sasaki, 2008). Such decreases are sometimes accompanied by enhanced effective 

connectivity (Büchel, Coull, & Friston, 1999), just like musical expertise has been 

found to alter connectivity patterns observed for audiovisual integration tasks 

(Paraskevopoulos, Kraneburg, Herholz, Bamidis, & Pantev, 2015). This suggests that 

connectivity analysis could be a fruitful next step in revealing the mechanisms 

underlying the present findings.  
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Observations from musical practice may be informative in explaining why 

processing overlap was specific to the musically relevant pitch component whereas 

intensity and location seemed to be processed more independently. Whereas pitch is 

essential for determining melodic identity, intensity and location may be varied more 

freely, e.g. in the context of expressive performance (Palmer, 1996; Widmer & Goebl, 

2004), without compromising the recognisability of a tune. For this reason, 

perception and production of pitch constitute key disciplines in most music teaching 

(Besson et al., 2007). Dedicated pitch rehearsal in musicians may thus manifest itself 

not only as superior decoding and production of linguistic prosody (Besson et al., 

2007; Lima & Castro, 2011; Pastuszek-Lipińska, 2008), but also as enhanced feature 

processing as demonstrated here (Study 4). 

Evaluation of the fit between behavioural data and model estimates from 

different implementations of IDyOM (Study 1) provided contrasting results to those 

obtained in the MEG study. Specifically, no clear differences were found between 

experts and non-experts in terms of the context length taken into account or the 

weighting of local and global structure when generating melodic predictions. For both 

groups, expectations primarily seemed to arise from schematic knowledge and to be 

based on relatively short contexts (i.e. approximately one event for expectedness and 

three events for inferred uncertainty). Although this is consistent with previous 

findings of comparable overall working memory capacities in experts and non-

experts (Cowan et al., 2004; Miller, 1956; cf. Section 2.10.2), it cannot be concluded 

whether this pattern generalises beyond the short, monophonic excerpts used here. 

Hence, more controlled studies are needed to draw more refined conclusions 

concerning expertise effects on cognitive representations of music. For instance, 

IDyOM could be used to select auditory stimuli that are specifically tailored to study 

this question. Additionally, optimising configurations of source viewpoints, sub-

models, and/or order bounds directly to empirical data would be potentially useful. 
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By contrast, most current procedures for automatic model configuration currently 

implemented in IDyOM (Section 2.7) follow the principles of compressive coding 

(Section 2.4), albeit mostly with convincing cognitive justification (Pearce, 2005). The 

alternative path outlined here more strongly emphasises how cognitive limitations 

constrain the prediction of musical structure. 

 

5.2.4. Predictive uncertainty 

The first three studies first of all established that predictive uncertainty constitutes 

an important aspect of predictive processing that is clearly separable from 

unexpectedness. Not only was it shown that uncertainty and unexpectedness can be 

controlled separately using IDyOM in the process of stimulus selection (Studies 1-2). 

More importantly, these two aspects showed clearly distinct patterns of expertise 

effects. For instance, although internalised probabilistic knowledge gave rise to 

conscious experience of surprise corresponding to the information content of events 

in melodic sequences, this did not always translate into an ability to introspect about 

the uncertainty associated with these same events before they occurred (Studies 1-2). 

Also, stylistic specialisation emerged in terms of explicit processing, but it did so 

specifically for uncertainty processing whereas expectedness processing did not 

differ notably between musicians specialising in classical music or jazz (Study 2). 

Taken together, these results substantiate the necessity of modelling both 

prospective uncertainty and retrospective unexpectedness in order to understand 

predictive processing. 

Having first established the key importance of predictive uncertainty as an aspect 

of listener expectations, the overall research question concerning how musical 

expertise affects this phenomenon was addressed. In the context of general expertise 

research introduced above (Section 2.10.3), the present findings may be interpreted 

such that musical expertise leads to lower uncertainty with maintained calibration. 
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Specifically, the findings that stylistic experts experience lower explicit uncertainty 

than non-musicians (Studies 1-2) are consistent with previous research suggesting 

that experts have greater confidence in their own predictions (Chi, 1978; Glenberg & 

Epstein, 1987; Oskamp, 1965). However, unlike previous studies, the musical experts 

in the present experiments were not subject to over-confidence, but actually did 

predict more accurately than non-musicians. This is evident from the co-occurring 

expertise effects on inferred and explicit uncertainty.8 

 In addition to expertise effects on inferred and explicit uncertainty, it was also 

established that expertise minimises the relative entropy between listener 

expectations and the probabilistic structure of music. Importantly, however, this 

effect was constrained by the amount of epistemic (i.e. reducible) uncertainty 

inherent in the musical context. Expertise was thus most advantageous in low-

entropy contexts, as evident from expertise effects on mean expectedness and 

uncertainty that were restricted to these particular stimuli (Studies 1-2). This 

suggests that low levels of expertise are characterised by default predictions with 

high uncertainty. In other words, in lack of better evidence, the listener presumes 

equiprobability of all possible outcomes. This has also been referred to as the 

Principle of Maximum Entropy (Jaynes, 1957; Keynes, 1921) according to which the 

least biased estimate given the available information is the probability distribution 

with the highest possible entropy value. In the hypothetical case of a complete novice 

where prior information is fully absent, this reduces to the uniform distribution. 

Thus, the potential for learning through relative entropy minimisation is a direct 

function of the amount of decodable structure in the environment. If all uncertainty in 

the stimulus is aleatory, then the expert is at no advantage.  

                                                           
8
 Note that because inferred uncertainty is not a measure of accuracy per se, conclusions regarding 

greater accuracy presume that lower inferred uncertainty in experts is associated with better 
alignment with statistics in music. Study 3 suggests that this is a fair assumption to make. 
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The Principle of Maximum Entropy in fact has vast implications for musical 

composition, practising, and teaching. For instance, the reason for the limited success 

of aleatoric music (and perhaps for the displeasure sometimes elicited by it) might be 

the limited potential for uncertainty reduction inherent in such music rather than to 

its initial degree of unexpectedness. Related limitations may apply to dodecaphonic 

and serial music where decodable structure, although present, may not always be 

tailored to the cognitive constraints of the listener (Dienes & Longuet-Higgins, 2004). 

Bebop jazz, by comparison, may seem unpredictable at first, but contains vast 

amounts of decodable structure, for instance in terms of pattern repetition as 

demonstrated here and elsewhere (e.g., Finkelman, 1997; Norgaard, 2014; Study 2). 

In the light of research showing that learners automatically seek out information 

sources yielding high degrees of statistical regularity (Creel, Newport, & Aslin, 2004; 

Fiser & Aslin, 2001; Gómez, 2002), it could be relevant to investigate whether greater 

satisfaction is derived from listening to low-entropy stimuli compared to high-

entropy stimuli. 

Moreover, the importance of context entropy as well as of dissociating 

uncertainty from unexpectedness has repercussions on the way that expertise 

experiments are designed. For instance, in an experiment of expectations in 

musicians and non-musicians, Bigand et al. (1999) varied the context preceding a 

major chord progression ascending a fourth. In the “expected” condition, the context 

ensured that the final progression was heard as V-I whereas in the “unexpected” 

condition it was heard as I-IV. Importantly, however, this is not merely a 

manipulation of surprise, but also one of uncertainty. Specifically, the “unexpected” 

resolution is preceded by a state of higher context entropy; for this reason alone, 

expertise may be less advantageous than in the “expected” condition. This is just one 

example of how future research on predictive processing of music could benefit from 

appreciating the distinction between uncertainty and surprise. 
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5.2.5. Predictive flexibility 

In answer to the research question concerning expertise-related effects on the ability 

to specify, access, and prioritise between competing predictive models, the present 

work established that musical experts are characterised by possessing highly 

specialised stylistic schemata optimised through exposure (Studies 1-3). 

Furthermore, both musicians and non-musicians alike seemed to possess an ability to 

suppress the influence of contextually irrelevant models (Study 2).  

The general psychological construct of cognitive firewalls provides a candidate 

explanation for this latter observation. In short, cognitive firewalls are “systems of 

representational quarantine and error correction” that limit the scope of contexts 

where particular cognitive schemata can be applied (Cosmides & Tooby, 2000). They 

are erected to avoid maladaptive situations resulting from misapplication of 

schematic knowledge in contexts where it would be irrelevant or unreliable, and 

therefore potentially harmful. Although erroneous predictions about musical 

continuation are usually not dangerous per se, Huron (2006) has proposed that this 

same principle applies to music cognition. In other words, cognitive firewalls are 

thought to underlie common notions of musical works and genres. This would explain 

why non-musician participants in Study 2 apparently applied a very 

underdeveloped–and thus highly uncertain–predictive model of the bebop style 

rather than the relatively well-developed model of general tonal music that they 

possessed according to the findings of Study 1. Although this latter stylistically 

irrelevant model would have enabled expectations with high certainty to be formed, 

contextual relevance seemed to be of higher priority. This interpretation is 

substantiated by previous findings that North-American listeners refrained from 

misapplying Western pitch schemata when listening to Indian music (Castellano, 

Bharucha, & Krumhansl, 1984). 
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Importantly, in order for cognitive firewalls to work as intended, the listener 

needs to be able to quickly and efficiently detect the musical genre in order to 

determine contextual relevance of competing predictive models. Evidence of 

spectrally based musical genre identification after a mere 250ms suggests that this is 

indeed the case (Gjerdingen & Perrott, 2008). That this mechanism is not flawless is 

evident from examples of irrelevant model misapplication for twelve-tone music 

(Krumhansl, Sandell, & Sergeant, 1987) and Nort-Sami yoiks (Krumhansl et al., 2000). 

In the context of expertise research, this naturally raises the question whether 

mechanisms for stylistic model selection or cognitive firewall construction are prone 

to expertise effects. Additionally, more basic questions still remain to be addressed 

concerning, for instance, which cues trigger model selection in the first place and how 

these processes relate to individual differences in cognitive flexibility (Deak, 2004). In 

Study 2, saxophone timbre, seventh chord cadences, and realistic swing rhythms 

were applied to evoke bebop schemata, but it is unknown whether this process was 

always successful in all participants and which one of these factors was in fact the 

determining one. 

The fact that expertise-related enhancements in auditory feature processing 

was restricted to musically relevant contexts and deviants involving pitch indicates 

that these neural adaptations may also be subject to cognitive firewalls (Study 4). In 

other words, musical relevance may in effect trigger more complex representations of 

musical structure. This may, in turn, help explain why, irrespective of expertise levels, 

shorter latencies and greater amplitudes of the MMN have been found for complex 

tones compared to pure tones (Tervaniemi et al., 2000) and when using a musically 

complex paradigm compared to a classical oddball paradigm (Lappe, Lappe, & Pantev, 

2015; Study 4). By adding an expertise dimension to such research designs, others 

have found expertise effects on MMNm amplitudes (Fujioka et al., 2004) and on 

cortical representations measured with fMRI (Pantev et al., 1998) only when using 



118 

complex piano notes and not when using pure tones. Such context-dependence 

indeed suggests that some expertise effects are housed behind cognitive firewalls. 

Lastly, on the methodological level, the need for research testing two 

stylistically contrasting models of expectation within the same participants was 

accommodated by training IDyOM to two separate repertoires (Study 2). 

Additionally, comparisons of experts specialising in different musical styles 

transcended the dichotomous bias dominant in previous musical expertise research 

(Study 2; cf. Section 2.10.4). Because the present work did, however, not recruit 

experts with bimusical specialisation (cf. Wong et al., 2009), the potential for 

extending the current predictive coding framework to this population yet remains. 

 

5.2.6. Conscious availability 

Interestingly, full correspondence between explicit uncertainty and uncertainty 

inferred from expectedness ratings was not always found. This inconsistency was 

present for musicians in Study 1 and for classical musicians in Study 2 and 

corresponds to previous observations that acquired knowledge of nonlocal rules in a 

musical grammar could only be detected using indirect liking ratings and not by using 

direct grammaticality judgements (Kuhn & Dienes, 2005). Taken together, these 

findings emphasise the importance of investigating aspects of predictive processing 

with a diverse range of methods. 

Following this lead, the present experiments provided an answer to the 

research question regarding how musical expertise affects the availability of 

predictive models to conscious introspection. In particular, the finding that stylistic 

specialisation in music was characterised by better explicit access to one’s own 

uncertainty processing (Study 2) supports explication theories of expertise 

acquisition (Sun et al., 2001, 2005, 2007; also see Chaffin & Logan, 2006; Section 

2.10.5). Expertise researchers have framed this process in terms of training-induced 
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perceptual facilitation such that lower-level mental operations become more efficient, 

thus releasing higher-order cognitive resources for conscious planning and self-

monitoring (Endsley, 2006; Logan, 1985). In the musical domain, this explication 

process may manifest itself, for instance, as more abstract cognitive representations 

for familiar musical styles (Ayari & McAdams, 2003; Castellano et al., 1984; Kessler, 

Hansen, & Shepard, 1984), or indeed as enhanced introspection (Study 2). The more 

sophisticated cognitive representations in musicians, demonstrated in Study 4, may 

also facilitate expertise-related explication of knowledge. Finally, given that the 

current findings pertain to receptive aspects of musical expertise, they, furthermore, 

supplement previous work which has mainly studied expertise-related implication 

and explication in the context of decision-making or motor processing (cf. Section 

2.10.5). 

All in all, it was particularly interesting that the difference in explicit access to 

schematic knowledge emerged specifically for uncertainty processing. Although truly 

implicit tasks, such as those in priming paradigms (Bharucha & Stoeckig, 1986; 

Bigand & Poulin-Charronnat, 2006; Bigand, Tillmann, Poulin, D'Adamo, & Madurell, 

2001; Bigand, Tillmann, Poulin-Charronnat, & Manderlier, 2005; Omigie et al., 2012; 

Tillmann & Bharucha, 2002; Tillmann, Janata, & Bharucha, 2003), would be needed to 

assess expertise differences in the conscious availability of expectedness processing, 

the present results do suggest that uncertainty processing constitutes a more 

cognitively demanding aspect of predictive processing where experts could be at an 

advantage, in particular, by having better explicit access to cognitive processes.  

 

5.2.7. Neural correlates 

Lastly, by showing expertise-induced changes of auditory feature processing, the 

included neurophysiological study added further evidence to the relatively well-

established point that musical expertise expresses itself in terms of neuroplasticity 
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(Study 4). This, moreover, provided a good exemplification of the meta-perspective of 

the sixth and final analytical perspective in that it can be used to investigate questions 

raised by some of the previous perspectives (in this case, the second one relating to 

cognitive representation, as discussed above, cf. Section 5.2.3). Study 3 further made 

a contribution to this endeavour by taking steps towards bridging theories in 

cognitive psychology (represented by statistical learning) with those in cognitive 

neuroscience (represented by predictive coding). Future work along these lines may 

fruitfully investigate the neural correlates of short-term expertise acquisition in the 

context of statistical learning experiments where factors like context entropy and the 

availability of cognitive representations, competing predictive models, and explicit 

knowledge are skilfully manipulated. 

 

5.2.8. Conclusions 

In conclusion, the preceding discussion has established how, in various ways, the 

empirical research presented here has addressed the research questions raised by 

each of the six analytical perspectives presented in the introduction (Table 5). 

Specifically, musical expertise can be viewed in scientific terms as (1) primarily 

acquired under universal cognitive constraints. This entails optimisation of internal 

predictive models through (2) sophistication of cognitive representations and (3) 

relative entropy minimisation with respect to environmental statistics. In this way, 

(4) the expert’s predictive models are refined and his or her ability to delimit relevant 

models as well as suppress irrelevant ones appears to be increased. Expertise 

facilitates these optimisation processes (5) by gradually explicating predictive, 

schematic knowledge. On a neural level, all these changes are expressed in terms of 

(6) considerable plasticity of the human brain. These are merely preliminary answers 

with a potential for driving future research along the analytical expertise framework; 
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yet, the fundamental processes of expertise acquisition outlined here constitute key 

elements in the predictive coding of musical expertise. 

 

Table 5. Six scientific view of musical expertise. Based on the empirical studies presented here 

(Studies 1-4), six scientific views of musical expertise emerged as answers (albeit preliminary 

ones) to the research questions raised by the analytical framework of musical expertise (Table 

1). 

Perspectives Research questions Scientific views of 

musical expertise 

Origin How does expertise arise? Acquired under universal 

constraints 

Cognitive 

representations 

How does expertise affect cognitive 

representation of musical structure? 

Sophistication of cognitive 

representations 

Predictive 

uncertainty 

How does expertise affect the uncertainty of 

listener expectations? 

Relative entropy 

minimisation  

Predictive 

flexibility 

How does expertise affect the ability to 

specify, access, and prioritise competing 

predictive models? 

Specification of relevant 

models and suppression 

of irrelevant ones 

Conscious 

availability 

How does expertise affect the availability of 

predictive models to conscious introspection? 

Explication of predictive 

knowledge 

Neural 

correlates 

How does expertise affect brain function? Neuroplasticity 
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5.3. Future directions for the expert(ise) researcher 

Summing up on the discussion section above, several research questions with 

relevance to future work emerged. These are mere examples of the range of issues 

that could potentially be addressed within this scientific expertise framework: 

 

· Predictive Coding of Musical Expertise: To what extent can predictive coding of 

expertise acquisition be modelled on an event-by-event basis using Bayesian 

modelling? 

· Origin: How may computational modelling of expertise acquisition be extended to 

include explicit instruction and deliberate practice? Which other information-theoretic 

measures capture pertinent aspects of expert and non-expert predictive processing? 

How does the plasticity of neural mechanisms leading to more dependent auditory 

feature processing in musical experts develop longitudinally? 

· Cognitive representations: What are the cognitive constraints on statistical learning? 

Which IDyOM viewpoints best model listener expectations? How does this vary with 

musical expertise? Which musical structures are most easily internalised? How is this 

reflected in musical universals? 

· Predictive uncertainty: How do the established effects of context entropy on expertise 

acquisition over longer time spans manifest themselves in the context of short-term 

statistical learning? 

· Predictive flexibility: What does it take to cross the cognitive firewalls in music 

perception–i.e. how are predictive model changes triggered? Does musical expertise 

make these walls thinner or thicker? 

· Conscious availability: How can musical teaching and practising methodologies be 

developed to facilitate expertise-related explication of probabilistic knowledge? How 

does explicit instruction best support implicit acquisition of musical expertise? 

· Neural correlates: What are the neural correlates of predictive uncertainty and the 

reduction hereof in statistical learning of musical structure? How does uncertainty 

reduction in music relate to reward processing? 
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5.4. A coda for the romanticised genius 

During the course of this dissertation, I hope to have convinced the reader that 

musical expertise as a phenomenon is by far elusive. It is not entirely innate, and it 

cannot be reduced to a simple question of all or nothing. Moreover, expertise is not 

only beneficial and creative in its nature. By contrast, the research conducted here 

clearly establishes that musical expertise can be studied empirically when cast in 

scientific terms. Such investigations reveal that it is primarily acquired and is subject 

to cognitive constraints, some of which (but not necessarily all) may indeed be innate. 

This acquisition process happens gradually and requires persistent dedication over 

considerable timespans during which expertise is moulded by sensory input. In the 

case of music, this gives rise to fascinating phenomena like stylistic specialisation. 

Musical expertise is highly multidimensional and entails optimisation of predictive 

processing which, in turn, may be parcelled into specific sub-processes pertaining to, 

for instance, expectedness and uncertainty. Although I argue that expertise may 

sometimes be maladaptive, evidence is provided that listeners possess sophisticated 

cognitive machinery preventing confusion of schematic models that would lead to 

contextually irrelevant expectations. Lastly, musical expertise characterises not only 

the generation of music, but also the perception of it, as demonstrated most clearly 

here for bebop jazz.  

Importantly, the scientific framing of musical expertise endorsed here does 

not take away anything from the mesmerising powers of musical excellence. On the 

contrary, a deeper and more multifaceted understanding of this phenomenon only 

increases its lure. Hence, although the romanticised genius lives on, he may have to 

put up with scientists picking his brain to understand their own fascination with his 

excellence.  
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7. Appendices 

The four appendices will be published as separate journal articles elsewhere 

and are thus not included in the present online version of the thesis. 

 


